Skip to main content

Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north–east of Algeria)

الكشف عن الفجوات الصخرية باستخدام التصوير ثنائي الأبعاد للمقاومية الكهربائية في حوض الشريعة (شمال شرق الجزائر)

Abstract

Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.

ملخص

الانهيارات الناتجة عن الفجوات الصخرية هي واحدة من أهم العوامل المؤثرة في تنمية المناطق الكارستية ، وخصوصا عندما يكون الأساس الصخري مغطى بتربة غير معززة.

أظهرت الدراسات لتشكيل مثل هده الانهيارات أنه من المرجح أن تتطور في شكل القاطع نتيجة لتآكلت ناتجة عن تدفق المياه الجوفية.

تعتبر المقاومية الكهربائية أو التصوير المقطعي (RESTOM) مناسبة تماما لرسم الخرائط الصخرية بسبب قدرة هده التقنية للكشف عن ميزات المقاومية و اختلافات المقاومية الخفية. أجريت عملية المسح المقطعي بطريقة المقاومية الكهربائية ثنائية الأبعاد في موقعين بالقرب من مدينة الشريعة حيث أن الطبقات الجيولوجية والمكونة أساسا من الحجر الجيري مغطاة بحوالي 10 أمتار من التربة الطينية.

أجري مقطع جيوفيزيائى بطريقة Wenner بين اثنين من الفجوات الصخرية حيث كان التباعد بين كل قطب 2م و طول المقطع حوالي 80 متر.

وتشير نتائج دراسات المسح عن طريق التصوير المقطعي RESTOM أنها أداة جيوفيزيائية مثالية للمساعدة في كشف ورصد الفجوات الصخرية وغيرها من التجاويف تحت سطح الأرض.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Al-Amoush and Abou Karaki (1997) Practical quantification of the anisotropy factor in electrical resistivity measurements, application on water exploration in Jordan, MSc. Thesis, University of Jordan

  • Annan AP, Cosway SW, Redman JD (1991) Water table detection with ground-penetrating radar. In: Soc. Explor. Geophys (Annual International Meeting Program with Abstracts), pp 494–497

  • Baali F (2001). Eude hydrogéologique hydrochimique de la région karstique de Chéria N–E Algérien. Magister Univ Annaba Algérie, p. 100

  • Baali F, Rouabhia A, Kherici N, Djabri L, Bouchaou L, Hani A (2007) Qualité des eaux souterraines et risque de pollution en milieu semi aride. Cas de la cuvette de Chéria. NE algérien. Journal of Estudios Geologicos. Vol. 63. CSIC, Spain

  • Ballard RF (1983) Cavity detection and delineation research. Report 5, Electromagnetic (radar) techniques applied to cavity detection. Technical Report GL, 83–1, p 90

  • Barker R, Moore J (1998) The application of time-lapse electrical tomography in groundwater studies. Lead Edge 17(10):1454–1458

    Article  Google Scholar 

  • Beck BF (1991) On calculating the risk of sinkhole collapse. In: Kastning EH, Kastning KM (eds) Proc Appalachian Karst Symp, Radford, Virginia, 23–26 March 1991. National Speleological Society, Huntsville, Alabama, pp 231–236

    Google Scholar 

  • Benson RC, Kaufmann RD, Yuhr LB, Martin D (1998) Assessment, prediction and remediation of karst conditions on I-70, Frederick, Maryland, 49th Highway Geology Symposium, Precott, Arizona, Sept. 10–14, 1998. Arizona Department of Transportation, Material Group, Arizona Geological Survey, pp 313–325

  • Bishop I, Styles P, Emsley SJ, Ferguson NS (1997) The detection of cavities using the microgravity technique: case histories from mining and karstic environments. Geol Soc Eng Geol Spec Publ 12:153–166

    Google Scholar 

  • Butler DK (1984) Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49(7):1084–1096

    Article  Google Scholar 

  • Burger HR (1992) Exploration geophysics of the shallow subsurface. Prentice-Hall, Englewood Cliffs, NJ, 489

    Google Scholar 

  • Chaffai H, Baali F, Djabri L, Rouabhia Aek (2003) Facteurs influençant le chimisme des eaux dans une zone semi-aride: Cas des aquifères d'El Ma El Abiod, Tébessa, Hammamet et Chéria. ICOWAP-Sep 2003. Colloque Oasis, Eau et population, Biskra Algérie, pp 339–344

  • Colley GC (1963) The detection of caves by gravity measurements. Geophys Prospect XI:1–9

    Article  Google Scholar 

  • Cook JC (1965) Seismic mapping of underground cavities using reflection amplitudes. Geophysics 30(4):527–538

    Article  Google Scholar 

  • Cook KL, Van NRG (1954) Interpretation of resistivity data over filled sinks. Geophys Prospect 21:716–723

    Google Scholar 

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–284

    Google Scholar 

  • Dahlin T, Loke M (1998) Resolution of 2-D Wenner resistivity imaging as assessed by numerical modelling. J Appl Geophys 38:237–249

    Article  Google Scholar 

  • Deceuster J, Delgranche J, Kaufmann O (2006) 2D cross-borehole resistivity tomographies below foundations as a tool to design proper remedial actions in covered karst. J Appl Geophys 60:68–86

    Article  Google Scholar 

  • Gaud J (1977) Etude géologique et hydrogéologique du plateau de Chéria Wilaya de Tébessa. Rapport interne N.° 2. A.N.R.H de Tébessa (Agence Nationale des ressources hydriques), p 96

  • Google Maps (2009) TerraMetrics, Cnes/Spot Image, GeoEye, Données cartographiques © 2009 Europa Technologies

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modeling in areas of complex geology. J Appl Geophys 29:211–226

    Article  Google Scholar 

  • La Moreaux PE, Wilson BM, Memon BA (1984) Guide to the hydrology of carbonate rocks. UNESCO, France

    Google Scholar 

  • Loke M, Barker R (1996) Rapid least-squares inversion of apparent resistivity pseudosection by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Mathé V, Léveque F, Mathé PE, Chevallier C, Pons Y (2006) Soil anomaly mapping using a caesium magnetometer: limits in the low magnetic amplitude case. J Appl Geophys 58:202–217

    Article  Google Scholar 

  • Rybakov M, Goldshmidt V, Fleischer L, Rotstein Y (2001) Cave detection and 4-D monitoring: a microgravity case history near the Dead Sea. The Leading Edge (Soc Explor Geophys) 20(8):896–900

    Article  Google Scholar 

  • Rybakov M, Rotstein Y, Shirman B, Al-Zoubi A (2005) Cave detection near the Dead Sea-a micromagnetic feasibility study. The Leading Edge (Soc Explor Geophys) 24(6):585–590

    Article  Google Scholar 

  • Sasaki Y, Matsuo K (1993) Surface-to-tunnel resistivity tomography at the Kamaishi Mine. Butsuri-Tansa 46:128–133

    Google Scholar 

  • Spies B, Ellis R (1995) Cross-borehole resistivity tomography of a pilot sale, in-situ vitrification test. Geophysics 60:886–898

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Van Schoor M, Duvenhage D (2000) Comparison of crosshole radio imaging and electrical resistivity tomography for mapping out disseminated sulphide mineralisation at a surface test site in Mpumalanga, South Africa. Explor Geophys 30:3–4

    Google Scholar 

  • Vila JM (1980) La chaîne alpine de l’Algérie orientale et des confins Algéro-Tunisiens. Thèse de Doctorat- es-sciences, Université Pierre et Marie curie, Paris VI

  • Williams PW (1985) Subcutaneous hydrology and the development of doline and cockpit karst. Z Geomorphol NF 29(4):463–482

    Google Scholar 

  • Zhou W, Beck BF, Adams AL (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42:922–928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chemseddine Fehdi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fehdi, C., Baali, F., Boubaya, D. et al. Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north–east of Algeria). Arab J Geosci 4, 181–187 (2011). https://doi.org/10.1007/s12517-009-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0117-2

Keywords

  • Resistivity tomography
  • RESTOM
  • Karst
  • Sinkhole
  • Cheria
  • Algeria