Skip to main content

Conceptual model and numerical simulation of the hydrothermal system in Hammam Faraun hot spring, Sinai Peninsula, Egypt

النموذج التصوري و المحاكاه العددية للنظام الحراري الأرضي أسفل عين حمام فرعون- شبه جزيرة سيناء - مصر

Abstract

The tectonic position of Egypt in the northeastern corner of the African continent suggests that it may possess significant geothermal resources, especially along its eastern margin. The most of the thermal springs in Egypt are located along the shores of Gulf of Suez and Red Sea. These springs are probably tectonic or nonvolcanic origin associated with the opening of the Red Sea—Gulf of Suez rifts, where the eastern shore of the Gulf of Suez is characterized by superficial thermal manifestations including a cluster of hot springs with varied temperatures. Hammam Faraun area consists of the hottest spring in Egypt where the water temperature is 70°C. Conceptual as well as numerical models were made on the Hammam Faraun hot spring based on geological, geochemical, and geophysical data. The models show that the heat source of the hot spring is probably derived from high heat flow and deep water circulation controlled by faults associated with the opening of the Red Sea and Gulf of Suez rifts.

Abstract

الوضع التكتوني لمصر في الركن الشمالي الشرقي من القارة الاقريقية يوحي بأنها تتمتع بقدر كبير من موارد الطاقة الحراريه الارضية و خصوصا علي طول حافتها الشرقية. و لهذا نجد أن معظم الينابيع الساخنة في مصر تقع علي طول شواطئ خليج السويس و البحر الاحمر و هذه الينابيع تكتوتيه المنشا و ليست بركانيه و ربما مرتبطه بالصدوع المسئوله عن تكوين البحر الاحمر و خليج السويس. حمام فرعون الذي يقع علي حافه خليج السويس الشرقية يعتبر من أسخن وأهم الينابيع الساخنة في مصر حيث تصل درجه حرارتة علي السطح الي 70 درجة سليزيوس. بناءا علي البيانات الجيولوجيه و الجيوكيمائية و الجيوفيزيائية لمنطقة حمام فرعون تم عمل نموذج تصوري للوضع الحراري و كذلك تم عمل محاكاة عددية لهذا الوضع التصوري. و تبين النموذج التصوري و العددي ان مصدر الحراره في عين حمام فرعون هو ناتج من ارتفاع في الصخور الناريه الساخنة و هذا يؤدي الي تسخين المياة القادمة من الامطار و كذلك من مياه خليج السويس عبر الشقوق الموجوده في هذه الصخور.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Barragán RM, Arellano VM, Portugal E, Sandoval F, Barrera VM (2001) Gas equilibrium for the Los Azufres (Michoacán) geothermal reservoir, México, in Proceedings of the 22nd PNOC-EDC Geothermal Conference, March 10–12, Manila, Philippines, pp 81–87

  • El-Qady G, Ushijima K, El-Sayed A (2000) Delineation of a geothermal reservoir by 2D inversion of resistivity data at Hammam Faraun area, Sinai, Egypt Proc. World Geothermal Congress 2005:1103–1108

    Google Scholar 

  • El-Nouby MR, Gaber AE (2007) Geothermal studies at Gabel El-Maghara area, North Sinai, Egypt. The Eguptian Society for Envirmental Science, Catrina 2(1):23–32

    Google Scholar 

  • El Ramly MF (1969) Recent review of investigations on the thermal and mineral springs in the U. A. R. XXIII Int Geol Cong 19:201–213

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Gesch DB, Verdin KL, Greenlee SK (1999) New land surface digital elevation model covers the Earth, Eos Trans. AGU 80:69–70

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Ca-Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • McKenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and East Africa. Nature 226:243–248

    Article  Google Scholar 

  • Meneisy MY (1990) Volcanicity, Chapt 9. In: Said R (ed) Geology of Egypt. Balkema Pub, Rotterdam, Netherlands, pp 157–172

    Google Scholar 

  • Morgan P, Boulos K, Hennin SF, Elerif AA, El-Sayed AA, Basta NZ, Melek YS (1985) Heat flow in eastern Egypt: the thermal signature of a continental breakup. J Geodyn 4:107–131

    Article  Google Scholar 

  • Morgan P, Boulos K, Swanberg CA (1983) Regional geothermal exploration in Egypt. EAEG 31:361–376

    Google Scholar 

  • Moustafa AR, Abdeen AR (1992) Structural setting of the Hammam Faraun block, eastern side of the Suez rift. J Univ Kuwait, Sci 19:291–310

    Google Scholar 

  • Nicholson K (1993) Geothermal fluids: chemistry and exploration techniques. Springer-Verlag, New York, NY, USA, p 263

    Google Scholar 

  • Nieva, Nieva R (1987) Developments in geothermal energy in Mexico. Part twelve: a cationic geothermometer for prospecting of geothermal resources. Heat Recov Syst 7:243–258

    Article  Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta 51:2319–2323

    Article  Google Scholar 

  • Patton TL, Moustafa AR, Nelson RA, Abdine SA (1994) Tectonic evolution and structural setting of the Suez Rift. In: Landon SM (ed) Interior rift basin. American Association Petroleum Geologists Memoir 59:7–55

    Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier, Amsterdam, p 377

    Google Scholar 

  • Sano Y, Nakamura Y, Notsu K, Wakita H (1988) Influence of volcanic eruptions on helium isotope ratios in hydrothermal systems induced by volcanic eruptions. Geochim Gosmochim Acta 52:1305–1308

    Article  Google Scholar 

  • Sharp IR, Gawthorpe RL, Armstrong B, Underhill JR (2000) Propagation history and passive rotation of mesoscale normal faults: implications for syn-rift stratigraphic development. Basin Res 12:285–306

    Article  Google Scholar 

  • Sturchio NC, Arehart GB, Sultan M, Sano Y, AboKamar Y, Sayed M (1996) Composition and origin of thermal waters in the Gulf of Suez area, Egypt. Appl Geochem 1 I:471–479

    Google Scholar 

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water-vapor sauration curve, in World Geothermal Congress, Kyushu-Tohoku, Japan, 1927–1932

Download references

Acknowledgment

We would like to express our gratitude to all staff members in National Research Institute of Astronomy and Geophysics (NRIAG), Egypt for their helpful and assistance. Also, many thanks to all the staff of the Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Japan for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdel Zaher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zaher, M.A., Ehara, S. & El-Qady, G. Conceptual model and numerical simulation of the hydrothermal system in Hammam Faraun hot spring, Sinai Peninsula, Egypt. Arab J Geosci 4, 161–170 (2011). https://doi.org/10.1007/s12517-009-0109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0109-2

Keywords

  • Hot springs
  • Hammam Faraun
  • Conceptual model
  • Numerical model
  • Red Sea
  • Gulf of Suez