Skip to main content
Log in

A comparative study of uranium–thorium accumulation at the western edge of the Arabian Peninsula and mineral deposits worldwide

الوقود النووي، هل هو وتر جديد للقوس ؟ دراسة مقارنة لتراكمات اليورانيوم والثوريوم على الحافة الغربية للجزيرة العربية والرواسب المعدنية حول العالم

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Jordan, located at the western edge of the Arabian Plate, stands out from the remaining part of the Arabian Peninsula by its abundance in radioactive elements, mainly uranium, in a way so far not found elsewhere on the Arabian Peninsula. Uranium (U) and thorium in Jordan are concentrated in eight different types of ore mineralization: (1) intrusive-related (intramagmatic), (2) vein-type, (3) superficial, (4) sandstone-hosted (5) limestone-hosted, (6) U-Th-REE placer-type, (7) black shales, and (8) phosphorites. The major concentration of radioactive elements are synsedimentary and diagenetic in nature, mainly in near-shore marine depositional environments where uranium contents are abnormally high in the late Cretaceous to Paleogene phosphorites and increasing towards the mobile shelf of the Tethys ocean. These uraniferous phosphorites form the source of uranium that was redeposited within terrigenous chemical residues of lacustrine-fluvial depositional systems in Central Jordan (calcretes). Faultbound radiometric anomalies are caused by hot brines being vented along with the Jordan-Dead-Sea rifting. Presumably, low-grade U accumulation in (hot) black shales and marls of Silurian age are responsible for these radiometric anomalies. In the present paper, the Jordanian uranium concentrations are compared with reference types of uranium deposits elsewhere in the world to get an idea if the geological, chemical, and mineralogical features of analogue uranium mineralization in Jordan are indicative of economic targets. The uranium concentration in Jordanian phosphorites has been tracked beyond the border into Syria, Iraq, Israel, and Saudi Arabia. The uranium potential in neighboring countries is assessed based on the current geological data available for the Mediterranean Phosphorite Belt which is poised to become a another string to the bow with respect to energy supply on the Arabian Peninsula.

Abstract

تقع الأردن على الحافة الغربية للصفيحة العربية وتمتاز عن بقية أجزاء الجزيرة العربية بوفرة العناصر النشطة إشعاعيا وخاصة اليورانيوم بشكل لم يتواجد حتى الآن في الجزيرة العربية. يتركز اليورانيوم والثوريوم في الأردن في 8 أنواع من تمعدن الخامات: (1) التداخلي (داخل الصهير)، (2) نمط العروق، (3) السطحي، (4) المستضاف بالحجر الرملي، (5) المستضاف بالحجر الجيري، (6) نمط مراقد اليورانيوم والثوريوم والعناصر الأرضية النادرة، (7) الطفل الأسود، (8) صخر الفوسفات. أغلب تراكيز العناصر المشعة مزامنة للترسب أو لاحقة النشأة، غالبا في بيئة بحرية قريبة من الشاطيء، بحيث يزداد محتوى اليورانيوم في صخور فوسفات العصر الكريتاوي والباليوجين باتجاه الرف المستقر لمحيط التيشس. صخر الفوسفات الحاوي على اليورانيوم يشكل المصدر لليورانيوم الذي أعيد ترسيبه، ضمن الرواسب الفتاتية الكيميائية المستخلصة في أنظمة الترسيب النهري والبحيري في وسط الأردن (كالكريت). الشذات الإشعاعية المحدود بالصدوع ناتجة عن خروج المحاليل الملحية الساخنة على طول خسف الأردن – البحر الميت. يفترض أن تراكمات اليورانيوم ذات الرتبة المنخفضة في صخور المارت والطفل الأسود (الساخن) للعصر السيلوري هي المسئولة عن هذه الشذوات الإشعاعية. في هذا البهث ستتم مقارنة تراكيز اليورانيوم في الأردن مع أنماط مرجعية لرواسب اليورانيوم في انحاء أخرى من العالم، لتكوين فكرة عن ما إذا كانت الخصائص الجيولوجية والكيميائية والمعدنية لتمعدن اليورانيوم في الأردن تدل على وجود أهداف اقتصادية. لقد تمت متابعة تراكيز اليورانيوم في صخور الفوسفات الأردنية إلى ما وراء الحدود إلى سوريا والعراق واسرائيل والسعودية. إن الامكانيات المحتملة لليورانيوم في دول المجاورة قد تم تقيمها بناء على البيانات الجيولوجية الحالية المتوفرة لحزام الفوسفات المتوسطي زالذي يرجح أن يصبح وترا آخر في القوس بالنسبة لموارد الطاقة في الجزيرة العربية.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abbas M, Prevot L, Lucas J (1985) Some petrological and mineralogical characters of upper Cretaceous phosphorites in central Palymrides, Syria. Science Geologie Memoir 77:35–39

    Google Scholar 

  • Abed AM, Khalid H (1985) Distribution of uranium in the Jordanian phosphates. Dirasat 12:91–103

    Google Scholar 

  • Abu-Ajamieh MM (1974) Uranium reserves in Jordan. Geological Survey and Bureau of Mines Natural Resources Authority, Amman, p 50

    Google Scholar 

  • Abu-Ajamieh MM, Bender FK, Eicher RN, El-Kaysi KK, Nimri F, Qudah BH, Sheyyab KH (1988) Natural resources of Jordan. Natural Resources Authority, Amman, p 224

    Google Scholar 

  • Al-Bassam KS, Al-Dahan AA, Jamil AK (1983) Campanian-Maastrichtian phosphorites of Iraq. Miner Deposita 18:215–233

    Article  Google Scholar 

  • Alsharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier, Amsterdam 843

    Google Scholar 

  • Avital Y, Starinsky A, Kolodny Y (1983) Uranium geochemistry and fission-track mapping of phosphorites, Zefa Field, Israel. Econ Geol 78:121–131

    Article  Google Scholar 

  • Barthel F, Dahlkamp FJ, Fuchs H, Gatzweiler R (1986) Kernenergierohstoffe. In: Bender F (ed) Angewandte Geowissenschaften. Enke, Stuttgart, pp 268–298

    Google Scholar 

  • Basson IJ, Greenway G (2004) The Rossing uranium deposit: a product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. J Afr Earth Sci 38:413–435

    Article  Google Scholar 

  • Baturin GN (2002) Manganese and molybdenum in phosphorites from the ocean. Lithol Mineral Resour 37:412–428

    Article  Google Scholar 

  • Bender F (1994) Jordan. In: Kulke H (ed) Regional petroleum geology of the World, P. I. Beiträge Regionale Geologie der Erde vol. 21, Gebrueder Borntraeger, Stuttgart, pp 487–493

  • Berning J, Cooke R, Hiemstra SA, Hoffman U (1976) The Rössing uranium deposit, South West Africa. Econ Geol 71:351–368

    Article  Google Scholar 

  • Bock W-D (1987) Geochemie und Genese der oberkretazischen Phosphorite Ägyptens. Berl Geowiss Abh 82:1–138

    Google Scholar 

  • Boujo A (1976) Contribution a l´etude du gisement de phosphate Cretace´-Eocene des Ganntour (Maroc Occidental). Science Geologique Memoir 43:227

    Google Scholar 

  • Briot P (1983) L’environnement hydrogéochimique du calcrete uranifère de Yeelirrie (Australie Occidentale). Miner Deposita 18:191–206

    Article  Google Scholar 

  • Brockamp O, Clauer N, Zuther M (2003) Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Schwarzwald, Germany. Int J Earth Sci 92:843–851

    Article  Google Scholar 

  • Burton JP, Fralick P (2003) Depositional placer accumulations in coarse-grained alluvial braided river systems. Econ Geol 98:985–1001

    Article  Google Scholar 

  • Cameron E (1990) Yeelirrie uranium deposit. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Monograph, vol. 14, Melbourne, pp 1625–1629

    Google Scholar 

  • Carl C, Dill HG (1983) Uranium disequilibria and modern redistribution phenomena in alteration zones in the Höhensteinweg uranium occurrence (Germany). Uranium 1:113–125

    Google Scholar 

  • Chen XY (1997) Pedogenic gypcrete formation in arid central Australia. Geoderma 77:39–61

    Article  Google Scholar 

  • Coppens R, Bashir S, Richard P (1977) Radioactivity of Al Hasa phosphates. A preliminary study. Miner Depos 12:189–196

    Article  Google Scholar 

  • Dabbagh A, Al-Hinai K, Khan M (1992) Evaluation of the Shuttle Imaging Radar (SIR-C/X-SAR) data for mapping paleo-drainage systems in the Kingdom of Saudi Arabia. Quaternary Deserts and Climatic Change 483–493

  • Dahlkamp FJ (1978) Geologic appraisal of the Key Lake U-Ni deposits, northern Saskatchewan. Econ Geol 73:1430–1449

    Article  Google Scholar 

  • Dahlkamp FJ (1979) Uranlagerstätten. Gmelin Handbuch der Anorganischen Chemie. Springer, Heidelberg 280

    Google Scholar 

  • De Joussineau G, Bazalgette L, Petit J-P, Lopez M (2005) Morphology, intersections, and syn/late-diagenetic origin of vein networks in pelites of the Lodève Permian Basin, Southern France. J Struct Geol 27:67–87

    Article  Google Scholar 

  • Dill HG (1986a) Fault-controlled uranium black ore mineralization from the western edge of the Bohemian Massif NE Bavaria/F.R. Germany. In: Fuchs HD (ed) Uranium vein-type deposits. International Atomic Energy Agency, Vienna, pp 303–323

    Google Scholar 

  • Dill HG (1986b) Metallogenesis of the early paleozoic graptolite shales from the Graefenthal Horst. Econ Geol 81:889–903

    Article  Google Scholar 

  • Dill HG (1987) Environmental and diagenetic analyses of Lower Permian epiclastic and pyroclastic fan deposits. Their role for coal formation and uranium metallogeny in the Stockheim trough FRG). Sed Geol 52:1–26

    Article  Google Scholar 

  • Dill HG (1988) Diagenetic and epigenetic U, Ba, and base metal mineralization in the arenaceous Upper Triassic “Burgsandstein” (Southern Germany). With special reference to mineralization in duricrusts. Mineral Petrol 89:93–105

    Article  Google Scholar 

  • Dill HG (1994a) Can REE patterns and U-Th variations be used a tool to determine the origin of apatite in clastic rocks? Sed Geol 92:175–196

    Article  Google Scholar 

  • Dill HG (1994b) Facies variation and mineralization in Central Europe from the late Paleozoic through the Cenozoic. Econ Geol 89:42–61

    Article  Google Scholar 

  • Dill HG (1995) Heavy mineral response to the progradation of an alluvial fan: implication concerning unroofing of source area, chemical weathering, and paleo-relief (Upper Cretaceous Parkstein fan complex/SE Germany). Sed Geol 95:39–56

    Article  Google Scholar 

  • Dill HG, Weiser T (1981) Eine Molybdänsulfid-Impsonit Mineralisation aus dem Uranvorkommen Wäldel/Mähring Oberpfalz). Neues Jahrbuch Mineralogie Monatshefte 1981:452–458

    Google Scholar 

  • Dill HG, Kantor W (1997) Depositional environment, chemical facies and a tentative classification of some selected phosphate accumulations. Geol Jahrb D 105:3–43

    Google Scholar 

  • Dill HG, Busch K, Blum N (1991) Chemistry and origin of veinlike phosphate mineralization, Nuba Mts. (Sudan). Ore Geol Rev 6:9–24

    Article  Google Scholar 

  • Dill HG, Pöllmann H, Bosecker K, Hahn L, Mwiya S (2002) Supergene mineralization in mining residues of the matchless cupreous pyrite deposit Namibia)—a clue to the origin of modern and fossil duricrusts in semiarid climates. J Geochem Explor 75:43–70

    Article  Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008) Fossil fuels, ore and industrial minerals. In: McCann T (ed) Geology of central Europe. Geological Society of London, Special Publication, London, pp 1341–1449

    Google Scholar 

  • Dill HG, Kus J, Abed AM, Sachsenhofer RF, Abul Khair H (2009) Diagenetic and epigenetic alteration of Cretaceous to Paleogene organic-rich sedimentary successions typical of the western margin of the Arabian Plate, northwestern Jordan. GeoArabia 14:101–140

    Google Scholar 

  • Galloway WE, Hobday DK (1996) Terrigenous clastic depositional systems—application to fossil fuel and groundwater resources. Springer, Berlin 489

    Google Scholar 

  • Goudie A (1973) Duricrusts in tropical and subtropical landscapes. Oxford University Press, Oxford 174

    Google Scholar 

  • Goudie AS, Pye K (1983) Chemical Sediments and geomorphology-Precipitates and residua in the near-surface environment. Academic Press, London, p 439

    Google Scholar 

  • Grimm W-D (1973) Stepwise heavy mineral weathering in the residual quartz gravel, Bavarian Molasse (Germany). Contribution Sedimentology 1:103–125

    Google Scholar 

  • Gross S, Ilani S (1987) Secondary uranium minerals from the Judean Desert and the Northern Negev, Israel. Uranium 4:147–158

    Google Scholar 

  • Hamarneh Y (1998) Oil shale resources development in Jordan. NRA, Jordan 82

    Google Scholar 

  • Hambleton-Jones BB, Levin M, Wagener GF (1986) Uraniferous superficial deposits in southern Africa: In: Anhaeusser CR, Maske S (eds) Mineral deposits of South Africa. Geological Society of South Africa, 2, 2269–2287

  • Hansley PL, Spirakis CS (1992) Organic matter diagenesis as the key to a unifying theory for the genesis of tabular Uranium-Vanadium deposits in the Morrison Formation, Colorado Plateau. Econ Geol 87:352–365

    Article  Google Scholar 

  • Hein KAA (2002) Geology of the Ranger Uranium Mine, Northern Territory, Australia: structural constraints on the timing of uranium emplacement. Ore Geol Rev 20:83–108

    Article  Google Scholar 

  • Hilpert LS, Moench RH (1960) Uranium deposits of the southern part of the San Juan Basin, New Mexico. Econ Geol 55:429–464

    Article  Google Scholar 

  • Ilani S, Strull A (1988) Uranium mineralization in the Judean Desert and in the northern Negev, Israel. Ore Geol Rev 4:305–314

    Article  Google Scholar 

  • Ilani S, Minster T, Kronfeld J, Even O (2006) The source of anomalous radioactivity in the springs bordering the Sea of Galilee, Israel. J Environ Res 85:137–146

    Google Scholar 

  • Jaber JO, Probert SD (1997) Exploitation of Jordanian oil shales. Appl Energy 58:161–175

    Article  Google Scholar 

  • Jaber JO, Mohsen MS (2001) Evaluation of non-conventional water resources supply in Jordan. Desalination 136:83–92

    Article  Google Scholar 

  • Jacob RE (1974) The radioactive mineralization in part of the central Damara Belt, Namibia, and its possible origin. Atomic Energy Board Pin 234:17

    Google Scholar 

  • Jarrar G, Stern RJ, Saffarini G, Al-Zubi H (2003) Late and postorogenic Neoproterozoic intrusions of Jordan: implications for crustal growth in the northernmost segment of the East African Orogen. Precambrian Res 123:295–319

    Article  Google Scholar 

  • Kříbek B (1989) Metallogeny, structural, lithological and time controls of ore deposition in anoxic environments. Miner Depos 26:122–131

    Google Scholar 

  • Kříbek B, Žak K, Spangenberg JE, Jehlička J, Prokeš S, Kominek J (1999) Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Pribram, Czech Republic; sources, radiation-induced alteration, and relation to mineralization. Econ Geol 94:1093–1114

    Article  Google Scholar 

  • Landais P (1996) Organic geochemistry of sedimentary uranium ore deposits. Ore Geol Rev 11:33–51

    Article  Google Scholar 

  • Linklater CM, Albinson Y, Alexander WR, Casas I, McKinely IG, Sellin P (1996) A natural analogue of high-pH cement pore waters from the Maqarin area of northern Jordan: comparison of predicted and observed trace-element chemistry of uranium and selenium. J Contam Hydrol 21:59–69

    Article  Google Scholar 

  • Lloyd JW, Pim RH (1990) The hydrogeology and groundwater resources development of the Cambro-Ordovician sandstone aquifer in Saudi Arabia and Jordanian. J Hydrol 121:1–20

    Article  Google Scholar 

  • Lucas J, Menor EA, Prévôt L (1980) Le gisement de phosphate de chaux de Taiba (Senegal). Un example d´enrichissement par alteration. Science Geologie Bulletin 32:39–57

    Google Scholar 

  • Lüning S, Schulz F, Marzouk A-M, Kuss J, Gharaibeh A, Kolonic S (2004) Uranium-enriched horizons refine the stratigraphic framework of Cenomanian-Turnonian (Late Cretaceous) strata in central Jordan and northern Tunisia. Z Dtsch Geol Ges 155:49–60

    Google Scholar 

  • Lüning S, Shahin YM, Loydell D, Al-Rabi HT, Masri A, Tarawneh B, Kolonic S (2005) Anatomy of a world-class source rock: Distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential. AAPG Bull 89:1397–1427

    Article  Google Scholar 

  • McCourt WJ, Ibrahim K (1990) Geology, geochemistry and tectonic setting of the granitic and associated rocks in the aquaba and araba complexes of Southwest Jordan. Natural Resources Authority, Geology Directorate, Geological Mapping Division Amman Bulletin 10:1–96

    Google Scholar 

  • Minster T, Ilani S, Kronfeld J, Even O, Godfrey-Smith D (2004) Radium contamination in the Nizzana-1 water well, Negev Desert, Israel. J Environ Radioact 71:261–273

    Article  Google Scholar 

  • Mohanty AK, Das SK, Van KV, Sengupta D, Saha SK (2003) Radiogenic heavy minerals in Chhatrapur beach placer deposit of Orissa, southeastern coast of India. J Radioanal Nucl Chem 258:383–389

    Article  Google Scholar 

  • Morton AC (1985) Heavy minerals in provenance studies. In: Zuffa GG (ed) Provenance of Arenites. D. Riedel Publication, Dordrecht, pp 249–277

    Google Scholar 

  • Nex P, Herd D, Kinnaird J (2002) Fluid extraction from quartz in sheeted leucogranites as a monitor to styles of uranium mineralization: an example from the Rössing area, Namibia. Geochem Explor Environ Anal 2:83–96

    Article  Google Scholar 

  • Notholt AJG, Sheldon RP, Davidson DF (2005) Phosphate deposits of the world: phosphate rock resources. Cambridge University Press, Cambridge, p 600

    Google Scholar 

  • Nriagu JO, Moore PB (1984) Phosphate minerals. Springer, Berlin, p 442

    Google Scholar 

  • OECD NEA, IAEA (2007) Uranium 2007. Resources, Production and Demand (“Red Book”). OECD Publishing, Paris, France

    Google Scholar 

  • Pagel M, Pironon J (1986) Un modele de formation de gisements d’uranium dans les shales noirs continentaux. Sci Géol Bull 39:277–292

    Google Scholar 

  • Phillips JD, Lampe M, King RT, Cedillo M, Beachley R, Grantham C (1997) Ferricrete formation in the North Carolina Coastal Plain. Z Geomorphol 41:67–79

    Google Scholar 

  • Polito PA, Kyser TK, Rheinberger G, Southgate PN (2005) A paragenetic and isotopic study of the proterozoic westmoreland uranium deposits, Southern McArthur Basin, Northern Territory, Australia. Econ Geol 100:1243–1260

    Article  Google Scholar 

  • Powell JH (1988) The Geology of the Karak area, map sheet no. 3152 III with geological map at 1:50,000. Natural Resources Authority, Geology Directorate, Geological Mapping Division, Bulletin 8:1–171

    Google Scholar 

  • Rempel H (2008) Peak oil—Perspektiven der Versorgung mit Energieträgern. Oral presentation at the University Witten-Herdecke, Germany

    Google Scholar 

  • Sanford RF (1994) A quantitative model of ground-water flow during formation of tabular sandstone Uranium deposits. Econ Geol 89:341–360

    Article  Google Scholar 

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate Sequence Stratigraphy. GeoArabia, Special Publication 2:1–371

    Google Scholar 

  • Slansky M (1986) Geology of sedimentary phosphates. Academy, London 210

    Google Scholar 

  • Smirnov P, Matveev AA (2001) Scientific principles, technology, and equipment for hydrometallurgical processing of uranium and complex ores. At Energy 91:815–823

    Article  Google Scholar 

  • Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69

    Article  Google Scholar 

  • Stein M (2003) Tracing the plume material in the Arabian–Nubian Shield. Precambrian Res 123:223–234

    Article  Google Scholar 

  • Vengosh A, Peri N, Haquin G, Paytan A, Pankratov I, Elhanani S, Karpas Z (2007) Mechanisms of radium mobilization for radium-rich groundwater from the Nubian Sandstone and carbonate aquifers in the Negev, Israel: Implications for Fossil Groundwater Resources in the Middle East. Presented at the AGU Joint Assembly, Acapulco, Mexico, H42A-03

  • Zereini F (1985) Sedimentpetrographie und Chemismus der Gesteine in der Phosphoritstufe (Maastricht, Oberkreide) der Phosphat-Lagerstätte von Ruseifa/Jordanien mit besonderer Berücksichtigung ihrer Uranführung. Frankfurter Geowissenschaftliche Abhandlungen C5:1–116

    Google Scholar 

Download references

Acknowledgement

I would like to express my gratitude to the staff members of the Jordan Atomic Energy Commission for discussion in the office and in the field. N. Xoubi, K.El-Kaysi, A.-H. Wriekat and W. El-Noor were of great assistance in the run-up to this study. I would like to extend my gratitude also to K. Toukan chairman of the commission (JAEC). My colleagues A.M. Abed and G. Jarrar were of great assistance during my field trips in Jordan. B. Weber took some snapshots of specimens from the study sites in Germany. I express my gratitude to P. Laznicka (West Lakes, South Australia) and G. Saffarini (Jordan University-Amman, Jordan) who reviewed this paper for the AJGS. I extend my gratitude also to the editor-in-chief of AJGS A. Al-Amri.

Excalibur Mineral Corp. provided Fig. 14a–d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Gerold Dill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dill, H.G. A comparative study of uranium–thorium accumulation at the western edge of the Arabian Peninsula and mineral deposits worldwide. Arab J Geosci 4, 123–146 (2011). https://doi.org/10.1007/s12517-009-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0107-4

Keywords

Navigation