Skip to main content

Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models

Abstract

This paper presents landslide hazard analysis at Cameron area, Malaysia, using a geographic information system (GIS) and remote sensing data. Landslide locations were identified from interpretation of aerial photographs and field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence are topographic slope, topographic aspect, topographic curvature, and distance to rivers, all from the topographic database; lithology and distance to faults were taken from the geologic database; land cover from TM satellite image; the vegetation index value was taken from Landsat images; and precipitation distribution from meteorological data. Landslide hazard area was analyzed and mapped using the landslide occurrence factors by frequency ratio and bivariate logistic regression models. The results of the analysis were verified using the landslide location data and compared with the probabilistic models. The validation results showed that the frequency ratio model (accuracy is 89.25%) is better in prediction of landslide than bivariate logistic regression (accuracy is 85.73%) model.

الملخص

اظهاراظهار بيانات الاستشعار عن بعد وادوات نظم المعلومات الجغرافية في تحليل خطر الانزلاق الارضى باستخدام النماذج الإحصائية المكانية : دراسة حالة

هذه الورقة تعرض تحليل خطر الانزلاقات في منطقة الكاميرون بماليزيا، وذلك باستخدام نظم المعلومات الجغرافية وبيانات الاستشعار عن بعد. حيث تم تحديد مواقع الانزلاقات من خلال تفسير الصور الجوية وكذلك المسح الميداني. وعن طريق البيانات الجيولوجية والطبوغرافية وصور الأقمار الصناعية التي تم جمعها وتجهيزها، ومن ثم تحويلها الى قاعدة البيانات المكانية باستخدام نظم المعلومات الجغرافية ومعالجة الصور. العوامل المختارة والتي تؤثر في مكان تواجد الانزلاق الارضى تشتمل على: الميل الطوبوغرافي، الاتجاة الطوبوغرافي، الانحناء الطبوغرافي، والمسافة إلى الأنهار، وجميعها مستخرجة من قاعدة البيانات الطبوغرافية؛ والخصائص الصخرية وكذلك المسافة إلي الفوالق، والتي أخذت من قاعدة البيانات الجيولوجية؛ وكما تم الحصول على خريطة غطاء الأرض من خلال صور القمر الصناعيTM ؛ و تم الحصول أيضاً على قيم المعامل النباتي من خلال صورالقمر الصناعي اللاندسات؛ وبيانات توزيع الامطار تم الحصول عليها من محطات الأرصاد الجوية. تم تحليل ورسم خرائط مكان خطر الانزلاق الارضى باستخدام عوامل تواجد الانزلاق من خلال تطبيق نسبة التردد (frequency ratio) ونماذج (bivariate logistic regression). وتم التحقق من نتائج التحليل باستخدام بيانات موقع الانزلاق وقورنت مع النماذج الاحتمالية. نتائج التحقق بينت ان نموذج نسبة التردد والذي تبلغ دقته 89.25 ٪ أفضل في التنبؤ بالانزلاق الارضى من نموذج (bivariate logistic regression) والذي تبلغ دقته 85.73 ٪.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Atkinson PM, Massari R (1998) Generalized linear modeling of susceptibility to land sliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Processes Landf 26:251–1263

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology, application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63:277–289

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkye) by fuzzy approach. Environ Geol 41:720–730

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • Lee S, Choi U (2003) Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosci J 7:243–252

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide risk mapping at Penang island, Malaysia. J Earth Syst Sci 115(6):1–12

    Article  Google Scholar 

  • Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002a) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:49–162

    Google Scholar 

  • Lee S, Choi J, Min K (2002b) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Lee S, Ryu JH, Min K, Won JS (2003a) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Proc Land 27:1361–1376

    Article  Google Scholar 

  • Lee S, Ryu JH, Lee MJ, Won JS (2003b) Landslide susceptibility analysis using artificial neural network at Boun, Korea. Environ Geol 44:820–833

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004a) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004b) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens 25:2037–2052

    Article  Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–336

    Article  Google Scholar 

  • Parise M, Jibson WR (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng Geol 58:251–270

    Article  Google Scholar 

  • Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775

    Article  Google Scholar 

  • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model. Earth Science Frontier 14(6):143–152

    Article  Google Scholar 

  • Pradhan B, Lee S (2009a) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15

    Google Scholar 

  • Pradhan B, Lee S (2009b) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network model. Environmental Earth Sciences (on-line first). doi: 10.1007/s12665-009-0245-8

  • Pradhan B, Singh RP, Buchroithner MF (2006) Estimation of stress and its use in evaluation of landslide Prone Regions using remote sensing data. Adv Space Res 37:698–709

    Article  Google Scholar 

  • Pradhan B, Lee S, Mansor S, Buchroithner MF, Jallaluddin N (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2:1–11

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia. Applied Geomatics 1:3–15

    Article  Google Scholar 

  • Rece A, Capolongo D (2002) Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28:735–749

    Article  Google Scholar 

  • Remondo J, Gonzalez A, Diaz de Teran JR, Cendrero A, Fabbri AG, Chung CJF (2003) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain”. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Shou KJ, Wang CF (2003) Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng Geol 68:237–250

    Article  Google Scholar 

  • Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55(7):1397–1405

    Article  Google Scholar 

  • Youssef AM, Maerz NH, Hassan AM (2009a) Remote sensing applications to geological problems in Egypt: Case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani Area, Southern Sinai. Landslides. doi: 10.1007/s10346-009-0158-3

  • Youssef AM, Pradhan B, Gaber AFD, Buchroithner MF (2009b) Geomorphological hazard analysis along the Egyptian red sea coast between Safaga and Quseir. Nat Hazard Earth Sys 9:751–766

    Google Scholar 

Download references

Acknowledgment

Authors would like to thank to the Malaysian Remote Sensing Agency and Department of Surveying, Malaysia for providing various datasets in this research. Thanks are also due to Malaysian Meteorological Service Department for providing rainfall data for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pradhan, B., Youssef, A.M. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3, 319–326 (2010). https://doi.org/10.1007/s12517-009-0089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0089-2

Keywords

  • Landslide
  • Hazard
  • Frequency ratio
  • Logistic regression
  • GIS
  • Remote sensing
  • Cameron Highland
  • Malaysia