Skip to main content

Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India

كلمة مفتاحيّة سحنة جيوكيميائيّة; ماء جوفيّ نوعية; سالم منطقة; صوديوم امتزاز نسبة; توزيع فضائيّة

Abstract

A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of \( {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} \). Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.

ملخص

جمعت مجموعة من 162 ماء جوفيّ عينات لثلاثة فصول تمثيليّة كان من سالم منطقة [تميلندو], هند أن يحلّ كيمياء ماء جوفيّ وماء جوفيّ نوعية ل يحدّ صلاحيته ل يشرب وزراعيّة يقترح. الماء محايدة إلى قلويّة في طبيعة مع [ف] يتراوح من 6.6 إلى 8.6 مع معدل من 8.0. لاحظت [إك] [هيغر] كان أثناء موقعة ريح موسميّة فصل. كان الوفرة من أيونات كبريات في الماء جوفيّ في الأمر ال [نا] > [ك] > [مغ] > [ك]=[كل]> [هك]3>هكذا4>رفض3.  عازف على المزمار يكشف خطة السيطرة من سحنة جيوكيميائيّة ك [ك-مغ-كل] مختلطة, [ن-كل], [ك-هك]3, [ك-ن-هك]3 و [ك-كل] نوع. رفض3, [كل], هكذا4 ويتجاوز [ف] ال يجوز حد أثناء فص وموقعة ريح موسميّة فصوص. [سر] كان [هيغر] أثناء موقعة ريح موسميّة وجنوبيّة غربيّة ريح موسميّة فصل يشير عال وملوحة منخفضة, مرضية لمعامل يتلقّى معتدلة ملح احتمال على ترب. يسقط بي من ماء [إيرّسبكتيف وف] فصل في صنف [إي] وصنف [إيي] يشير ماء معتدلة إلى جيّدة لعمليّة ريّ أغراض. طبقا التصنيف الماء لعمليّة ريّ غرض لاءمت ماء لمحلّية وأغراض زراعيّة مع استثناء ثانويّة [إيرّسبكتيف وف] فصول.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Ahmed SS, Mazumder H, Jahan CS, Ahmed M, Islam S (2002) Hydrochemistry and classification of groundwater, Rajshahi City Corporation Area, Bangladesh. J Geol Soc Ind 60:411–418

    Google Scholar 

  • Antoniou V (2002) Natural and human environment of Athens basin. Paper presented at the 6th Geographical conference of the Hellenic Geographical Society, Thessaloniki, I, 311–318

  • APHA et al (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Bathrellos GD, Skilodimou HD, Kelepertsis A, Alexakis D, Chrisanthaki I, Archonti D (2008) Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environ Geol 56:11–18

    Article  Google Scholar 

  • Bhargava DS, Killender DJ (1988) The technology of water resources in industries. A rational approach. J Ind Water Works Assoc 20:107–112

    Google Scholar 

  • Doneen LD (1948) The quality of irrigation water. California Agriculture Department, Davis 4–11, 6–14

    Google Scholar 

  • Eaton, F.M. (1954) Formulae for estimating leaching and gypsum requirement of irrigation waters, Texas Agri Expt Stn Misc Pub. No. 3

  • Freez RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Yuce G (2007) A geochemical study of the groundwater in the Misli basin and environmental implications. Environ Geol 51:857–868

    Article  Google Scholar 

  • Goyal RS, Jain BL (1982) Use of gypsum, modifying crustal conductive conditions in saline water irrigated soils. J Ind Soc Soil Sci 30:447–454

    Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper 2254, pp 117–120

    Google Scholar 

  • ISI (1995) Indian standard specification for drinking water. IS, 10500-1995. ISI, New Delhi

    Google Scholar 

  • Kumar M, Kumari K, Singh UK, Ramananthan AL (2009) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57:873–884

    Article  Google Scholar 

  • Miller GT (1979) Living in the environment. Wadsworth, Belmond, p 470

    Google Scholar 

  • Jalali M (2007) Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environ Monit Assess 130:347–364

    Article  Google Scholar 

  • Pachero J, Marin L, Cabrera A, Steinich B, Escolero O (2001) Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ Geol 40:708–715

    Article  Google Scholar 

  • Piper AM (1994) A graphic procedure in the geochemical interpretation of water analysis. Am Geophys Union Trans 25:914–923

    Google Scholar 

  • Prasad, N.B.N (1984) Hydrogeological studies in the Bhadra River Basin. Ph.D. thesis, University of Mysore, Karnataka, India, p 323.

  • Mohan R, Singh AK, Tripathi JK, Chowdhary GC (2000) Hydrochemistry and quality assessment of groundwater in Naini industrial area, Allahabad District, Uttapradesh. J Geol Soc Ind 55:77–90

    Google Scholar 

  • Raghunath HM (1987) Geochemical survey and water quality, Groundwater Wiley eastern limited, New Delhi, pp 343–347.

  • Ramanathan S (1956) Ultrabasic rocks of Salem and Dodkanya and their relationship with Charnockite. Doctoral thesis, Madras University

  • Rengarajan R, Balasubramanian A (1990) Corrosion and scale formation characteristic of groundwater in and around Nangavalli, Salem District, Tamilnadu. J Appl Hydrol 2:15–22

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. USDA handbook 60. Government Printing Office, Washington, DC 160 pp

    Google Scholar 

  • Ryznes JW (1944) A new index for determining amount of calcium carbonate scale formed by water. J Am Water Works Assoc 36:472–486

    Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Anandhan P, Vasudevan S (2005) Application of statistical analysis to hydrogeochemical study of groundwater in hard rock terrain, Salem district, Tamilnadu. Ind J Geochem 20:181–190

    Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Prasanna MV, Vasanthavihar M, Peter J, Anandhan P (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur taluk, Salem district, Tamilnadu, India. J Earth Syst Sci 117:49–59

    Article  Google Scholar 

  • Stamatis G, Lambrakis N, Alexakis D, Zagana V (2006) Groundwater quality in Mesogea basin in eastern Attica (Greece). Hydrol Process 20:2803–2818

    Article  Google Scholar 

  • Subba Rao N, Prakasa Rao J, John Devadas D, Srinivasa Rao KV, Krishna C, Nagamalleswara Rao B (2002) Hydrogeochemistry and groundwater quality in a developing urban environment of a semi-arid region, Guntur, Andhra Pradesh. J Geol Soc Ind 59:159–166

    Google Scholar 

  • Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamilnadu, India. Environ Geol 47:1099–1110

    Article  Google Scholar 

  • Umar A, Umar R (2002) Hydrogeochemical characterization of groundwater in parts of Etah district central Ganga alluvial plain, Uttar Pradesh. In: Thangarajan M, Rai SN, Singh VS (eds) Proceedings of the international groundwater conference on sustainable development and management of groundwater resources in semi-arid region with special reference to hard rocks, Dindugal, Tamilnadu, 20–22 February 2002. Oxford and IBH, New Delhi, pp 247–255

    Google Scholar 

  • USSL (1954) Diagnosis and improvement of saline and alkali soils. United States Development Agency handbook 60. Government Printing Office, Washington, DC 147 pp

    Google Scholar 

  • Viessman W Jr, Lewis GL, Knapp JW (1989) Introduction to hydrology. Harper and Row, Singapore

    Google Scholar 

  • Wen XH, Wu YQ, Wu J (2008) Hydrochemical characteristics of groundwater in the Zhangye basin, northwestern China. Environ Geol 55:1713–1724

    Article  Google Scholar 

  • WHO (1996) Guidelines for drinking water quality. Geneva 1:53–73

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. U.S. Department of Agriculture, Circulation 969, Washington D.C. p.19

  • Yvonne, Anku S, Bruce Banoeng Yakubo E, Daniel E, Asiedu K, Sandow E, Yidana M (2008) Water quality analysis of groundwater in crystalline basement rocks, northern Ghana. Environ Geol. doi:00254-008-1578-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasamoorthy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar, M. et al. Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India. Arab J Geosci 4, 91–102 (2011). https://doi.org/10.1007/s12517-009-0076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0076-7

Keywords

  • Geochemical facies
  • Groundwater quality
  • Salem district
  • Sodium adsorption ratio
  • Spatial distribution