Skip to main content

Utilizing image processing techniques in lithologic discrimination of Buwatah area, Western Arabian Shield

الإستفادة من تقنيات معالجة الصور الفضائيه في التفريق الليثولوجي بمنطقة بواطه، غربي الدرع العربي

Abstract

The main task of this article is the evaluation of the IHS color transformation fusion, color composite ratios, and principal component analysis techniques for lithologic discrimination of the basement rocks exposed at Buwatah area, Western Arabian Shield, Saudi Arabia. Landsat ETM+ images were prepared and used to perform this task using PCI Geomatica software. IHS fusion technique was conducted through four main processing steps: (1) registration of the multispectral image (7, 4, and 2 in RGB) to the panchromatic image and then resample it to the same spatial resolution as that of the panchromatic image; (2) transformation of the three multispectral bands from RGB to IHS space; (3) substitution of the intensity value from the high spatial resolution panchromatic band; and finally (4) back transformation to RGB. The band ratios 5/7, 3/1, and 4/3 displayed in RGB, respectively, were used to produce the color composite ratio image. The first principal component (PC1), the second principal component (PC2), and the third principal component (PC3), displayed in RGB, respectively, were used to construct the color composite principal component image. The resultant images successfully discriminated the exposed rock units in the study area and a lithologic map has been constructed that is subjected to precise field verification. The stratigraphy of the area under consideration starts with metavolcanics and associated volcaniclastics as an oldest rock unit, followed by granodiorite–diorite, pink granite, biotite granite, acidic and basic dykes, and Cenozoic volcanics. A new rock unit (biotite granite) has been introduced that was not represented in previous mapping of the considered sector. The biotite granite is verified by field and petrographical studies.

الخلاصه:

الهدف الرئيسي من هذا البحث تقييم تقنيات مستخدمه في التفريق الليثولوجي مثل التحويل اللوني IHS والصور النسبية الملونه والتحليل الإحصائي PCA لصخور القاعدة الموجودة بمنطقة بواطه غربي الدرع العربي بالمملكة العربية السعوديه. تم تجهيز وإستخدام صور لاندسات ETM+ في هذه العمليات عن طريق البرنامج PCI Geomatica. تقنية التحويل اللوني IHS تم بواسطة اربع خطوات (1) تسجيل النطاقات الطيفيه 7و4و2 في الأحمر والأخضر والأزرق إلى الصورة الأحادية اللون ومن ثم إعادتها ألى نفس الدقة المكانية للصورة الأحادية اللون (2) تحويل النطاقات المتعددة الأطياف من الأحمر والأخضر والأزرق إلى IHS (3) إحلال قيم شدة الإضاءة من نطاق أحادي الطيف ذو الدقة المكانيه العاليه، وأخيرا (4) إعادة تحويلها إلى الأحمر والأخضر والأزرق. إن الصور النسبية 5/7و3/1و4/3 والتي عًرضت في الأحمر والأخضر والأزرق على التوالي استخدمت لإنتاج الصورة الملونة النسبية. أما صور المركبات الأساسيه الأول PC1 والثاني PC2 والثالث PC3 والتي تم عرضه في الأحمر والأخضر والأزرق على التوالي استخدمت لإنشاء الصورة الملونة المركبة من طريقة التحليل الإحصائي (المركبات الأساسيه). إن الصور المنتجة في هذا البحث فرقت بنجاح بين الوحدات الصخرية الظاهرة في منطقة الدراسة وتم إنتاج خريطة ليثولوجية بعد التأكد من العمل الحقلي، والتتابع الصخري لمنطقة الدراسة يبدأ بالصخور البركانية المتحولة والصخور البركانية الرسوبية كأقدم وحدة صخرية يتبعها صخور الجرانوديورايت/ديورايت والجرانيت اللحمي اللون والجرانيت البيوتيتي والقواطع الحمضية والقاعدية وأخيرا البركانيات الحديثه. وفي هذا البحث تم التعرف على وحدة صخرية جديدة هي الجرانيت البيوتيتي والذي لم يًمثل من قبل في أعمال التخريط لنفس المنطقة وهذه الوحدة الصخرية تم التأكد منها بواسطة الدراسة الحقلية ودراسة قطاعات صخرية تحت الميكرسكوب.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16

References

  • Cakir, H.I. and Khorram, S. (2003). Fusion of high spatial resolution imagery with high spectral resolution imagery using multiresolution approach, ASPRS Annual Conference Proceedings, May 2003 Anchorage, Alaska (2003) on CD-ROM.

  • Carper WJ, Lilesand TW, Kieffer RW (1990) The use of intensity–hue–saturation transformation for merging SPOT panchromatic and multispectral image data. Photogramm Eng Remote Sensing 56(4):459–467

    Google Scholar 

  • Chavez PS, Bowell J (1988) Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona region. Photogram Eng Remote Sensing 54(12):1699–1708

    Google Scholar 

  • Chavez PS, Sides SC, Anderson JA (1991) Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan. Photogramm Eng Remote Sensing 57(3):295–303

    Google Scholar 

  • Chen CM, Hepner GF, Forster RR (2003) Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features. ISPRS J Photogramm Remote Sens 58(1):19–30

    Article  Google Scholar 

  • Chen, Y., Fung, T., Lin, W. and Wang, J. (2005). An image fusion method based on object-oriented image classification, Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, Proceedings, 2005 IEEE International vol. 6 (2005), pp. 3924-3927.

  • Cliché G, Bonn F, Teillet P (1985) Integration of the SPOT Pan channel into its multispectral mode for image sharpness enhancement. Photogramm Eng Remote Sensing 51(3):311–316

    Google Scholar 

  • Couloigner I, Ranchin T, Valtonen V, Wald L (1998) Benefit of the future SPOT-5 and of data fusion to urban roads mapping. Int J Remote Sens 19(8):1519–1532

    Article  Google Scholar 

  • Dai X, Khorram S (1999) Data fusion using artificial neural networks: a case study on multitemporal change analysis. Comput Environ Urban Syst 23(1):19–31

    Article  Google Scholar 

  • Drury SA (1993) Image interpretation in geology. Chapman and Hall, London, p 283

    Google Scholar 

  • Ehlers M (1991) Multisensor image fusion techniques in remote sensing. ISPRS J Photogramm Remote Sens 46(1):19–30

    Article  Google Scholar 

  • Hamimi Z (1996) Tectonic evolution of the shield rocks of Gabal El Sibai area, central Eastern Desert, Egypt. Egypt J Geol 40(1):423–453

    Google Scholar 

  • Johnson, P.R. (2006). Explanatory notes to the map of Proterozoic geology of western Saudi Arabia. Saudi Geological Survey Technical Report, SGS-TR-2006-4, 62 p.

  • Kaufmann H (1988) Mineral exploration along the Aqaba–Levant Structure by use of TM-data. Int J Remote Sensing 9(10 and 11):1639–1658

    Article  Google Scholar 

  • Kurz F, Hellwich O (2000) Empirical estimation of vegetation parameters using multisensor data fusion. Int Arch Photogramm Remote Sens 33(Part B7):733–737

    Google Scholar 

  • Lau W, King BA, Li Z (2000) The influences of image classification by fusion of spatially oriented images. Int Arch Photogramm Remote Sens 33(Part B7):752–759

    Google Scholar 

  • Li S, Kwok JT, Wang Y (2000) Using the discrete wavelet transform to merge Landsat TM and SPOT panchromatic images. Information Fusion 3(1):17–23

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation (5th edition). Wiley, New York

    Google Scholar 

  • Ling Y, Ehlers M, Usery L, Madden M (2007) FFT enhanced IHS transform method for fusing high-resolution satellite images. ISPRS J Photogramm Remote Sens 61(6):381–392

    Article  Google Scholar 

  • Madani, A. (2003). Evaluation of the Fusion of Landsat TM Imagery and Scanned Aerial Photo For Mapping the Trachytic Ring Dykes, Wadi Natash Volcanic Field, South Eastern Desert, Egypt. Fifth International Conference on the Geology of the Middle East, Ain Shams University, 20–21 January 2003, Cairo, Egypt. pp. 509–517.

  • Pellaton, C. (1981). Geologic map of the Al Madinah Quadrangle, Sheet 24D (GM-52 A), Kingdom of Saudi Arabia. Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources, Saudi Arabia.

  • Pohl C, Van Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  • Price JC (1987) Combining panchromatic and multispectral imagery from dual resolution satellite instruments. Remote Sens Environ 21(9):119–128

    Article  Google Scholar 

  • Qari MYHT (1991) Application of Landsat TM data to geological studies, Al-Khabt area, southern Arabian Shield. Photogramm Eng Remote Sensing 57(4):421–429

    Google Scholar 

  • Qari MYHT (1992) Improving geological mapping in the Arabian Shield using Landsat Thematic Mapper imagery—Jabal Duhayyah area. Int J Remote Sens 13(15):2765–2772

    Article  Google Scholar 

  • Ranchin T, Wald L (2000) Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogramm Eng Remote Sensing 66(1):49–61

    Google Scholar 

  • Ranjbar H, Honarmand M, Moezifar Z (2004) Application of the Crosta technique for porphyry copper alteration mapping using ETM‏ data in the southern part of the Iranian volcanic sedimentary belt. J Asian Earth Sci 24:237–243

    Article  Google Scholar 

  • Shettigara VK (1992) A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm Eng Remote Sensing 58(5):561–567

    Google Scholar 

  • Sultan M, Arvidson RE, Sturchio N (1986) Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology 14:995–999

    Article  Google Scholar 

  • Sultan M, Arvidson RE, Sturchio NC, Guinness EA (1987) Lithologic mapping in arid region with Landsat thematic mapper data: Meatiq dome. Egypt Geol Soc Am Bull 99:748–762

    Article  Google Scholar 

  • Sun W, Heidt V, Gong P, Xu G (2003) Signal and image processing–information fusion for rural land-use classification with high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 41(4):883–890

    Article  Google Scholar 

  • Tu TM, Su SC, Shyu HC, Huang PS (2001) A new look at IHS-like image fusion methods. Information Fusion 2(3):177–186

    Article  Google Scholar 

  • Volesky JC, Stern RJ, Johnson PR (2003) Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Res 123:235–247

    Article  Google Scholar 

  • Welch R, Ehlers M (1987) Merging multiresolution SPOT HRV and Landsat TM data. Photogramm Eng Remote Sensing 53(3):301–303

    Google Scholar 

  • Yesou H, Besnus Y, Rolet J (1993) Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery—a contribution to the study of geological structures. ISPRS J Photogramm Remote Sens 48(5):23–36

    Article  Google Scholar 

  • Zhang Y (1999) A new merging method and its spectral and spatial effects. Int J Remote Sens 20(10):2003–2014

    Article  Google Scholar 

  • Zhang Y (2002) Automatic image fusion: a new sharpening technique for Ikonos multispectral images. GIM International 16(5):54–57

    Google Scholar 

  • Zhang Y, Hong G (2005) An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour Ikonos and QuickBird images. Information Fusion 6(3):225–234

    Article  Google Scholar 

  • Zhou J, Civco DL, Silander JA (1998) Wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int J Rem Sens 19(4):743–757

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Zakaria Hamimi, Prof. M. Abdelwahed Mohamed, Dr. A. Madani, and Dr. A. Z. Bishta for helping during the progress of this work and for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. T. Qari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qari, M.H.T. Utilizing image processing techniques in lithologic discrimination of Buwatah area, Western Arabian Shield. Arab J Geosci 4, 13–24 (2011). https://doi.org/10.1007/s12517-009-0049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0049-x

Keywords

  • Remote sensing
  • Image processing
  • Lithologic discrimination
  • Saudi Arabia
  • Landsat