Skip to main content
Log in

Integration of remote sensing data with the field and laboratory investigation for lithological mapping of granitic phases: Kadabora pluton, Eastern Desert, Egypt

دمج بيانات الاستشعارعن بعد مع التحقيقات الميدانية والمعملية لرسم الخرائط الصخرية لأطوار الجرانيت لكادابورا بلوتون - الصحراء الشرقية - مصر

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In the current study, an integration of Enhanced Thematic Mapper Plus (ETM+), field, and laboratory data have been used for lithological mapping of different granitic phases in the Kadabora area, Eastern Desert, Egypt. Application of enhancement techniques, including a new proposed band ratio combination (ratio 5/3, 3/1, 7/5 in RGB, respectively) and supervised classification images are used in discriminating different granitic phases in the Kadabora pluton from each other and from their environs. The data have been proved with the help of field and geochemical investigations. The results revealed that: (1) the Kadabora granitic pluton could be distinguished into three phases that recognized by field and laboratory investigation including granodiorite (phase I), monzogranite (phase II), and syeno-alkali feldspar granite (phase III). These phases are arranged according to their relative ages while the country rocks include ophiolitic mélange and metagabbro–diorite complex. It is also confirmed that the granitic pluton is invaded by dyke swarms which is trending in N–S direction. Geochemically, results show that the granodiorite is calc-alkaline, I-type and formed under subduction tectonic regime. Monzogranite falls within the alkaline and highly fractionated calc-alkaline granites, whereas syeno-alkali feldspar granite extends into proper alkaline granitoids field. Monzogranite and syeno-alkali feldspar granite belong to the A2-subtype granite. This A2-subtype granite was probably formed in an extensional regime, subsequent to subduction which can lead to tensional break-up of the crust (i.e., post-collisional, post-orogenic granites). The monzogranite and the syeno-alkali feldspar granite were probably formed by partial melting of relatively anhydrous lower crust source and/or tonalite to granodiorite is viable alternative to the granulite source.

Abstract

فى الدراسة الحالية تمت عملية تكامل بين بيانات اللاقط الثيماتيكي المحسن ((Enhanced Thematic Mapper Plus ETM+ والبيانات الحقلية والمعملية والتي استخدمت في عملية التخريط الصخري للأطوار المختلقة للجرانيت ببلوتون كادابورا بالصحراء الشرقية بمصر. وبتطبيق الطرق المحسنة والمتمثلة باستخدام صورة band ratio combination ratio 5/3, 3/1, 7/5 in RGB) ) وبمساعدة التصنيف المراقب الذي استخدم في التفريق بين الأطوار المختلفة للجرانيت في كادابورا بلوتون فيما بينها وكذلك من البيئة المحيطة. تم تأكيد النتائج بمساعدة كل من التحقيقات الميدانية والجيوكيميائية. أوضحت نتائج الدراسة ما يلي:- الجرانيت بكادابورا بلوتون يمكن تمييزه إلى ثلاث أطوار والتي ميزت أيضاً بالدراسات الحقلية والمعملية ، وهذه الأطوار قسمت على النحو التالي: الطور الأول (granodiorite) ، الطور الثاني (monzogranite) والطور الثالث (syeno – alkali feldspar granite). هذه الأطوار مرتبة طبقاً للعمر النسبي لها، ومن ناحية أخرى نلاحظ أن الصخور المحيطة تشتمل على الأفيوليت ميلانج و معقد الميتاجابرودايوريت. بالإضافة إلى ذلك لوحظ أن مجسم الجرانيت بكادابورا قد تأثر بتداخل العديد من القواطع التي تأخذ اتجاه شمال – جنوب. من الناحية الجيوكيميائية أوضحت النتائج أن الطور الأول (granodiorite) عبارة عن (calc-alkaline) تابع للنوع I والذي تكون فى بيئة تكتونية (subduction) أما الطور الثاني (monzogranite) فإنه يقع في نطاق (alkaline and highly fractionated calc-alkaline) في حين أن الطور الثالث (syeno- alkali feldspar- granite) يمتد إلى (alkaline). ويتبع كلاً من الطور الثاني والثالث (A2-subtype granite)والذي تكون في بيئة شد والتي أدت إلى تكسير للقشرة الارضية والتي تلي عملية (subduction). ومن المحتمل أن يكون الطور الثاني والثالث قد تكونا نتيجة الإذابة الجزئية للجزء السفلي من القشرة الشبه مائية.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel Naby H, Frisch W (2002) Origin of the Wadi Haimur–Abu Swayel gneiss belt, South Eastern Desert, Egypt: petrological and geochronological constraints. Precambrian Res 113:307–332

    Article  Google Scholar 

  • Abdel Naby H, Frisch W, Hegner E (2000) Evolution of Pan-African Wadi Haimur metamorphic sole, Eastern Desert, Egypt. J Metamorph Petrol 18:639–651

    Article  Google Scholar 

  • Abdelsalam MG, Stern RJ (1999) Mineral exploration with satellite remote sensing imagery: examples from the Neoproterozoic Arabian Shield. J Afr Earth Sci 28:4a

    Google Scholar 

  • Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in southern Arizona. Econ Geol 78:591–604

    Google Scholar 

  • Abu El-Ela AR (1985) Geology of Wadi Mubarak District, Eastern Desert, Egypt. PhD thesis Tanta University Tanta 359p

  • Abu El-Ela AM, Salem IA (1999) Petrological and geochemical studies on the dyke swarms of the Kadabora granite pluton, Eastern Desert, Egypt. Ann Geol Surv Egypt XXII:47–63

    Google Scholar 

  • Akaad MK, El-Ramly MF (1960) Geological history and classification of the basement rocks in the Central Eastern Desert of Egypt. Geol Surv Egypt paper no. (9):24p

  • Akaad MK, Noweir AM, Kotb H (1979) Geology and petrochemistry of granite association of the Arabian Desert orogenic belt between lat. 25° 35′ and 26° 30′ N. Delta J Sci 3:107–151

    Google Scholar 

  • Akaad MK, Noweir AM, Abu El-Ela AM (1996) Geology of the Pan-African basement rocks of the Jabal El-Hadid Wadi Mubarak district, Eastern Desert, Egypt. Geol Surv Egypt paper no. (73):78p

  • Anderson JL (1983) Proterozoic anorogenic granite plutonism of North America. Mem Geol Soc Am 161:133–154

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental evidence. Am Mineral 71:317–324

    Google Scholar 

  • Crane RB (1971) Preprocessing techniques to reduce atmospheric and sensor variability in multispectral scanner data. Proceedings of the 7th International Symposium on Remote Sensing of Environment Ann Arbor Michigan 2:345–1355

  • Drury SA (1987) Image interpretation in geology, 1st edn. Allen & Unwin, London, p 243

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • El-Gaby S (1975) Petrochemistry and geochemistry of some granites from Egypt. Neues Jhare Buch Mineral Abhandlungen 124:147–189

    Google Scholar 

  • El Habaak GH, Asran AMH (2001) Subduction-related Wadi Dabr metagabbro–dioritic complex, intrusive gabbros and the enclosed opaques, Central Eastern Desert, Egypt. The Second International Conference on the Geology of Africa, Assiut, Egypt, v. 1: 205–237

  • El-Mahallawi MM (1989) Petrological and geochemistry of some Egyptian granitic rocks from the central Eastern Desert, Egypt. Egypt J Geol 33:47–69

    Google Scholar 

  • El-Sayed NM (1998) Tectonic setting and petrogenesis of the Kadabora pluton: a late Proterozoic anorogenic A-type younger granitoids in the Egyptian shield. Chem Erde 58:38–63

    Google Scholar 

  • Egyptian General Petroleum Corporation, Conco Coral (1987) Geological map of Egypt scale 1:500,000.

  • Frei M, Jutz SL (1989) Use of Thematic Mapper Data for the detection of gold bearing formations in the eastern desert of Egypt. In Proceedings of the 7th Thematic Conference on Remote Sensing for Ore Exploration Geology II:1157–1172

  • Gad S (2002) Exploration for mineralized granites in Central Eastern Desert, Egypt. M Sc Thesis Faculty of Science Aswan South Valley University Egypt 118pp

  • Gad S, Kusky T (2006) Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). J Afr Earth Sci 44:196–202

    Article  Google Scholar 

  • Gass L (1977) The evolution of the Pan-African crystalline basement in NE Africa and Arabia. J Geol Soc London 134:129–138

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 390

    Google Scholar 

  • Greenberg JK (1981) Characteristic and origin of Egyptian younger granites. Geol Soc Am Bull Pt II 92:749–840

    Article  Google Scholar 

  • James RS, Hamilton DL (1972) Phase relations in the system Ab–Or–An–SiO2 at 1 kilobar water vapor pressure. Contrib Miner Petrol 21:111–141

    Article  Google Scholar 

  • Kabesh ML, Hilmy ME, Bishady AM (1967) Geology of the basement rocks in the area around Um Rus gold mine, Eastern Desert. J Geol UAR 2/2:59–85

    Google Scholar 

  • Kabesh ML, Hilmy NIE, Salem Abdel-Karem A (1980) Petrochemistry and petrogenesis of Abu granitic stock Eastern Desert, Egypt. Acta Mineralogica-Petrographica 12:257–296

    Google Scholar 

  • Kaufmann H (1988) Mineral exploration along the Aqaba–Levent structure by use of Landsat TM data: concepts, processing, and results. Int J Remote Sens 9:1639–1658

    Article  Google Scholar 

  • Kleemann GJ, Twist D (1989) The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: Evidence bearing on the nature of A-type magmatism. J Petrol 30:1383–1414

    Google Scholar 

  • Kusky TM, Matsah M (2003) Neoproterozoic dextral faulting on the Najd fault system, Saudi Arabia, preceded sinistral faulting and escape tectonics related to closure of the Mozambique Ocean. Journal of the Geological Society, London, Special issue on “Proterozoic East Gondwana: Supercontinent Assembly and Break-up”, edited by M. Yoshida, B.F. Windley, S. Dasgupta, and C. Powell, p. 327–361

  • Kusky TM, Ramadan T (2002) Structural controls on Neoproterozoic mineralization in the south eastern desert, Egypt: an integrated field, Landsat TM, and SIR-C/X approach. J Afr Earth Sci 35:107–121

    Article  Google Scholar 

  • Le Maitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 17:589–598

    Google Scholar 

  • MacDonald RM, Davies GR, Bliss CM, Leat PT, Bailey DK, Smith RL (1987) Geochemistry of high silica peralkaline rhyolites, Naivasha, Kenya Rift valley. J Petrol 28:979–1008

    Google Scholar 

  • Neiva SN, Neiva JM, Parry SL (1987) Geochemistry of the granitic rocks and their minerals, Serra da Estrala, Central Portugal. Geochim Cosmochim Acta 51:439–454

    Article  Google Scholar 

  • Nockolds SR, Allen R (1953) The geochemistry of some igneous rock series. Geochim Cosmochim Acta 4:105–142

    Article  Google Scholar 

  • Pearce JA, Gale GH (1977) Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geological Society (London) Special Publication 7:14–24

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Rogers JJW, Greenberg JK (1981) Trace elements in continental-margin magmatism; Part III, Alkali granites and their relationship to cratonization. Geol Soc Am Bull 92:6–95793

    Article  Google Scholar 

  • Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183

    Article  Google Scholar 

  • Sabet AH, Zhukov MA, Baburin LM, Mansour MG (1976) Rare metal apogranite in Um Naggat massif. Ann Geol Surv Egypt 6:191–200

    Google Scholar 

  • Saunder AD, Tarney J, Marsh NG, Wood DA (1980) Ophiolite as ocean crust or marginal basin crust: A geochemical approach. In: Panoyiotou (ed.), Ophiolites Proc Int ophiolite Symp Cyprus 193–204

  • Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks. US Geol Surv Bull 1144-A:56p

    Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for consolidation of Gondwanaland. Ann Rev Earth Planet Sci 22:319–351

    Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127

    Google Scholar 

  • Streckeisen AL (1976) Classification of the common igneous rocks by means of their chemical composition: a provisional attempt. J N Jb Min H-1:1–15

    Google Scholar 

  • Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of igneous rocks. Neu Jb Mineral Abh 136:169–206

    Google Scholar 

  • Sultan M, Arvidson RE, Sturchio NC (1986) Mapping of serpentinites in the E Desert of Egypt using Landsat Thematic Mapper data. Geology 14:995–999

    Article  Google Scholar 

  • Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97:261–281

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Mem Geol Soc Am 74:153p

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wright JB (1969) A simple alkalinity ratio and its application to questions of non-orogenic granite gneiss. Geol Mag 106:370–384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohamed Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, A.M., Hassan, A.M. & Mohamed, M.A.E.M. Integration of remote sensing data with the field and laboratory investigation for lithological mapping of granitic phases: Kadabora pluton, Eastern Desert, Egypt. Arab J Geosci 2, 69–82 (2009). https://doi.org/10.1007/s12517-008-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-008-0020-2

Keywords

Navigation