Skip to main content

Activatie van neuronale compensatienetwerken als behandeling van de ziekte van Parkinson

Samenvatting

In de substantia nigra bevinden zich dopamine-producerende zenuwcellen die de motorcoördinatie regelen. Bij de ziekte van Parkinson sterven deze cellen af. Het feit dat de eerste parkinsonsymptomen pas optreden zodra er meer dan 60 % van die specifieke cellen is afgestorven, toont aan dat het brein tot op zekere hoogte in staat is te compenseren voor de veranderde balans na schade. Neuronale compensatie richt zich deels op de plasticiteit van de nog aanwezige zenuwcellen binnen het verstoorde hersengebied (vooral het striatum). Daarnaast kunnen andere netwerken in de hersenen de functie overnemen en zodoende het schadegebied omzeilen (via het cerebellum). Dit artikel geeft de nieuwste inzichten uit recent preklinisch onderzoek bij apen naar mechanismen van neuronale compensatie bij schade aan dopamineproducerende cellen in de substantia nigra. De naastgelegen rode kern blijkt een belangrijke rol te spelen in de compensatie bij de ziekte van Parkinson. Dit onderzoek draagt bij aan de ontwikkeling van alternatieve behandelmethoden voor de ziekte van Parkinson.

This is a preview of subscription content, access via your institution.

Figuur 1
Figuur 2
Figuur 3
Figuur 4

Literatuur

  1. 1.

    Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266–71.

    CAS  PubMed  Google Scholar 

  2. 2.

    Hermanowicz N, Jones SA, Hauser RA. Impact of non-motor symptoms in Parkinson’s disease: a PMDAlliance survey. Neuropsychiatr Dis Treat. 2019; https://doi.org/10.2147/ndt.s213917.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Philippens IHCHM, Verhave PS. Preclinical solutions for insight in premotor Parkinson. In: Rana AQ, redactie. Symptoms of Parkinson’s disease. Kroatië: IntechOpen Access Publisher; 2011.

    Google Scholar 

  4. 4.

    Postuma RB, Lang AE, Massicotte-Marquez J, Montplaisir J. Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology. 2006;66(6):845–51.

    CAS  PubMed  Google Scholar 

  5. 5.

    Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, et al. Alpha-synuclein in Parkinson’s disease: causal or bystander? J Neural Transm. 2019;126(7):815–40.

    PubMed  Google Scholar 

  6. 6.

    Philippens IHCHM, ’t Hart BA, Torres G. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. Drug Discov Today. 2010;15(23–24):985–90.

    CAS  PubMed  Google Scholar 

  7. 7.

    Mehanna R, Moore S, Hou JG, Sarwar AI, Lai EC. Comparing clinical features of young onset, middle onset and late onset Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):530–4.

    PubMed  Google Scholar 

  8. 8.

    Gasser T. Genetics of Parkinson’s disease. Curr Opin Neurol. 2005;18(4):363–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Migliore L, Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res. 2009;667(1–2):82–97.

    CAS  PubMed  Google Scholar 

  10. 10.

    Tolosa E, Gaig C, Santamaria J, Compta Y. Diagnosis and the premotor phase of Parkinson disease. Neurology. 2009;72(7 Suppl):S12–S20.

    PubMed  Google Scholar 

  11. 11.

    Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis. 2008;5(3–4):118–21.

    CAS  PubMed  Google Scholar 

  12. 12.

    Appel-Cresswell S, Fuente-Fernandez R de la, Galley S, McKeown MJ. Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol. 2010;23(4):407–12.

    PubMed  Google Scholar 

  13. 13.

    Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.

    CAS  PubMed  Google Scholar 

  14. 14.

    Mao Z, Ling Z, Pan L, Xu X, Cui Z, Liang S, et al. Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: a network meta-analysis. Front Aging Neurosci. 2019;11:23.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hayes MW, Fung VS, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust. 2019;211(6):277–83.

    PubMed  Google Scholar 

  16. 16.

    Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018;42:72–85.

    CAS  PubMed  Google Scholar 

  17. 17.

    Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302(5646):819–22.

    CAS  PubMed  Google Scholar 

  18. 18.

    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    CAS  PubMed  Google Scholar 

  19. 19.

    Philippens IHCHM. Non-human primate models for Parkinson’s disease. Drug Discov Today: Dis Model. 2008;5(2):105–11.

    Google Scholar 

  20. 20.

    Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N‑methyl-4-phenyl‑1,2,3,6 -tetrahydropyridine: uptake of the metabolite N‑methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985;82(7):2173–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci. 2003;991:199–213.

    CAS  PubMed  Google Scholar 

  23. 23.

    Vliet SA van, Vanwersch RA, Jongsma MJ, Gugten J van der, Olivier B, Philippens IH. Neuroprotective effects of modafinil in a marmoset Parkinson model: behavioral and neurochemical aspects. Behav Pharmacol. 2006;17(5–6):453–62.

    PubMed  Google Scholar 

  24. 24.

    Verhave PS, Jongsma MJ, Van den Berg RM, Vis JC, Vanwersch RA, Smit AB, et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep. 2011;34(8):1119–25.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rothblat DS, Schneider JS. Repeated exposure to MPTP does not produce a permanent movement disorder in cats recovered from MPTP-induced parkinsonism. Neurodegeneration. 1995;4(1):87–92.

    CAS  PubMed  Google Scholar 

  26. 26.

    Colotla VA, Flores E, Oscos A, Meneses A, Tapia R. Effects of MPTP on locomotor activity in mice. Neurotoxicol Teratol. 1990;12(4):405–7.

    CAS  PubMed  Google Scholar 

  27. 27.

    Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm. 2001;108(11):1263–82.

    CAS  PubMed  Google Scholar 

  28. 28.

    Philippens IHCHM, Wubben JA, Franke SK, Hofman S, Langermans JAM. Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease. Sci Rep. 2019;9(1):880.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Babinski J, Jarkowski J, Plechet V. Kinésie paradoxale. Mutisme parkinsonien. Rev Neurol. 1921;37(12):1266–70.

    Google Scholar 

  30. 30.

    Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, et al. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. Neuroimage. 2017; https://doi.org/10.1016/j.neuroimage.2017.02.073.

    Article  PubMed  Google Scholar 

  31. 31.

    Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14(11):480–2.

    CAS  PubMed  Google Scholar 

  32. 32.

    Philippens IHCHM, Vanwersch RA. Neurofeedback training on sensorimotor rhythm in marmoset monkeys. Neuroreport. 2010;21(5):328–32.

    PubMed  Google Scholar 

  33. 33.

    Philippens IHCHM, Wubben JA, Vanwersch RAP, Estevao DL, Tass PA. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson’s disease. Ann Clin Transl Neurol. 2017;4(8):585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Thompson M, Thompmson L. Biofeedback for movement disorders (Dystonia with parkinson’s disease): theory and preliminary results. J Neurother. 2002;6(4):51–70.

    Google Scholar 

  35. 35.

    Thompson M, Thompson L. Improving quality of life using biofeedback plus neurofeedback. NeuroConnections. 2011; Winter:18–21.

  36. 36.

    Roth SR, Sterman MB, Clemente CD. Comparison of EEG correlates of reinforcement, internal inhibition and sleep. Electroencephalogr Clin Neurophysiol. 1967;23(6):509–20.

    CAS  PubMed  Google Scholar 

  37. 37.

    Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav Neurosci. 2013;127(2):222–36.

    PubMed  Google Scholar 

  38. 38.

    Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol. 2014;13(1):100–12.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cheney PD, Fetz EE, Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res. 1991;87:213–52.

    CAS  PubMed  Google Scholar 

  40. 40.

    Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5‑T MRI machine. Neuroradiology. 2006;48(10):755–62.

    PubMed  Google Scholar 

  41. 41.

    Ralston DCD. Red nucleus of macaca fascicularis: an electron microscopic study of its synaptic organization in relation to afferent and efferent connectivity and proposals for the role of the red nucleus in motor mechanisms. [Proefschrift]. Groningen: Rijksuniversiteit Groningen; 1995.

    Google Scholar 

  42. 42.

    Paxinos G, Huang XF. Atlas of the human brainstem. San Diego: Academic Press; 1995.

    Google Scholar 

  43. 43.

    Donkelaar HJ ten. Evolution of the red nucleus and rubrospinal tract. Behav Brain Res. 1988;28(1–2):9–20.

    PubMed  Google Scholar 

  44. 44.

    Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. Plos One. 2009;4(8):e6623.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Padel Y, Angaut P, Massion J, Sedan R. Comparative study of the posterior red nucleus in baboons and gibbons. J Comp Neurol. 1981;202(3):421–38.

    CAS  PubMed  Google Scholar 

  46. 46.

    Colpan ME, Slavin KV. Subthalamic and red nucleus volumes in patients with Parkinson’s disease: do they change with disease progression? Parkinsonism Relat Disord. 2010;16(6):398–403.

    PubMed  Google Scholar 

  47. 47.

    Franke SK, Kesteren RE van, Hofman S, Wubben JA, Smit AB, Philippens IH. Individual and familial susceptibility to MPTP in a common marmoset model for Parkinson’s disease. Neurodegener Dis. 2016;16(5–6):293–303.

    CAS  PubMed  Google Scholar 

  48. 48.

    Nathan PW, Smith MC. The rubrospinal and central tegmental tracts in man. Brain. 1982;105(Pt 2):223–69.

    CAS  PubMed  Google Scholar 

  49. 49.

    Yamaguchi K, Goto N. Development of the human magnocellular red nucleus: a morphological study. Brain Dev. 2006;28(7):431–5.

    PubMed  Google Scholar 

  50. 50.

    Onodera S, Hicks TP. Evolution of the motor system: Why the elephant’s trunk works like a human’s hand. Neuroscientist. 1999;5(4):217–26.

    Google Scholar 

  51. 51.

    Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C. Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex. 2009;19(2):424–34.

    PubMed  Google Scholar 

  52. 52.

    Raghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, et al. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol. 2016;524(10):2117–29.

    CAS  PubMed  Google Scholar 

  53. 53.

    Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X‑linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. Plos One. 2013;8(3):e58840.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pomberger T, Risueno-Segovia C, Loschner J, Hage SR. Precise motor control enables rapid flexibility in vocal behavior of marmoset monkeys. Curr Biol. 2018;28(5):788–794.e3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingrid Philippens.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Philippens, I. Activatie van neuronale compensatienetwerken als behandeling van de ziekte van Parkinson. Neuropraxis 24, 28–35 (2020). https://doi.org/10.1007/s12474-020-00247-2

Download citation

Trefwoorden

  • ziekte van Parkinson
  • compensatie
  • neurofeedback
  • behandeling