Advertisement

Neuropraxis

, Volume 22, Issue 3, pp 85–91 | Cite as

Een hersenimplantaat voor communicatie

  • Mariska J. Vansteensel
  • Erik J. Aarnoutse
  • Zac V. Freudenburg
  • Nick F. Ramsey
Artikel
  • 41 Downloads

Samenvatting

Locked-in syndroom (LIS) is een situatie waarin iemand bij bewustzijn is, maar niet kan bewegen en spreken. De oorzaak ervan kan een hersenstaminfarct zijn of een neurodegeneratieve aandoening, zoals amyotrofe laterale sclerose (ALS). De cognitieve vermogens bij LIS zijn veelal intact. Brain-Computer Interfaces (BCI’s) zijn apparaten die gebruikmaken van de hersensignalen om bijvoorbeeld computers of communicatiehulpmiddelen te bedienen. Omdat er geen spiercontrole nodig is om een BCI te gebruiken, worden BCI’s gezien als een mogelijke oplossing voor de communicatieproblemen van mensen met LIS. In dit artikel bespreken wij een recente doorbraak op het gebied van volledig implanteerbare BCI’s, waarbij een vrouw met LIS door ALS in staat is om, met hoge betrouwbaarheid, en weliswaar beperkte snelheid, haar communicatiehulpmiddel te bedienen via gemeten hersensignalen. Door te proberen haar hand te bewegen, genereert ze elektrische veranderingen in het hersensignaal, die vertaald worden in een virtuele druk op een knop, waarmee ze de gewenste letters en woorden selecteert. Hiermee is zij de eerste ter wereld die zelfstandig thuis een implanteerbare BCI gebruikt voor communicatie. De apparatuur voldoet aan veel eisen die gebruikers van BCI’s en communicatiehulpmiddelen stellen en heeft daarmee de potentie om substantieel bij te dragen aan de kwaliteit van leven van mensen met LIS.

Trefwoorden

locked-in syndroom brain-computer interface communicatie kwaliteit van leven implantaat 

Notes

Subsidieverstrekker

Dit werk werd gefinancierd door subsidies van de EU (ERC-Adv 320708) en de Nederlandse Technologie Stichting STW (STW 12803).

Literatuur

  1. 1.
    American Congress of Rehabilitation Medicine. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. Arch Phys Med Rehabil. 1995;76(2):205–9.CrossRefGoogle Scholar
  2. 2.
    Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol. 1979;221(2):77–91.CrossRefPubMedGoogle Scholar
  3. 3.
    Blandin V. ALIS Association du Locked-In Syndrome: 12 ans d’expérience en France. Mondelinge presentatie wetenschappelijk congress. Leuven. 2009. http://www.uzleuven.be/sites/default/files/revalidatiecentrum/wittebols/ALIS%20Leuven%201%20-%20veronique%20blandin.pdf. Geraadpleegd op 24 januari 2018.Google Scholar
  4. 4.
    Pels EGM, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Estimated prevalence of the target population for brain-computer interface neurotechnology in the Netherlands. Neurorehabil Neural Repair. 2017;31(7):677–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Vansteensel MJ, Kristo G, Aarnoutse EJ, Ramsey NF. The brain-computer interface researcher’s questionnaire: from research to application. Brain Comput Interfaces (Abingdon). 2017;4(4):236–47.CrossRefGoogle Scholar
  6. 6.
    Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T, Freudenburg ZV, et al. Fully implanted brain-computer interface in a locked-in patient with ALS. N Engl J Med. 2016;375(21):2060–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lulé D, Zickler C, Häcker S, Bruno MA, Demertzi A, Pellas F, et al. Life can be worth living in locked-in syndrome. Prog Brain Res. 2009;177:339–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Bruno MA, Bernheim JL, Ledoux D, Pellas F, Demertzi A, Laureys S. A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority. BMJ Open. 2011;1(1):e39.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Trail M, Nelson ND, Van JN, Appel SH, Lai EC. A study comparing patients with amyotrophic lateral sclerosis and their caregivers on measures of quality of life, depression, and their attitudes toward treatment options. J Neurol Sci. 2003;209(1–2):79–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Jakobsson Larsson B, Ozanne AG, Nordin K, Nygren I. A prospective study of quality of life in amyotrophic lateral sclerosis patients. Acta Neurol Scand. 2017;136(6):631–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Laureys S, Pellas F, Van Eeckhout P, Ghorbel S, Schnakers C, Perrin F, et al. The locked-in syndrome : what is it like to be conscious but paralyzed and voiceless? Prog Brain Res. 2005;150:495–511.CrossRefPubMedGoogle Scholar
  12. 12.
    Kübler A, Winter S, Ludolph AC, Hautzinger M, Birbaumer N. Severity of depressive symptoms and quality of life in patients with amyotrophic lateral sclerosis. Neurorehabil Neural Repair. 2005;19(3):182–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Doble JE, Haig AJ, Anderson C, Katz R. Impairment, activity, participation, life satisfaction, and survival in persons with locked-in syndrome for over a decade: follow-up on a previously reported cohort. J Head Trauma Rehabil. 2003;18(5):435–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Rousseau MC, Baumstarck K, Alessandrini M, Blandin V, Billette de Villemeur T, Auquier P. Quality of life in patients with locked-in syndrome: evolution over a 6-year period. Orphanet J Rare Dis. 2015;10:88.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Young JM, McNicoll P. Against all odds: positive life experiences of people with advanced amyotrophic lateral sclerosis. Health Soc Work. 1998;23(1):35–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Felgoise SH, Stewart JL, Bremer BA, Walsh SM, Bromberg MB, Simmons Z. The SEIQoL-DW for assessing quality of life in ALS: strengths and limitations. Amyotroph Lateral Scler. 2009;10(5–6):456–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12(5):318–24.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Blain-Moraes S, Schaff R, Gruis KL, Huggins JE, Wren PA. Barriers to and mediators of brain-computer interface user acceptance: focus group findings. Ergonomics. 2012;55(5):516–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Liberati G, Pizzimenti A, Simione L, Riccio A, Schettini F, Inghilleri M, et al. Developing brain-computer interfaces from a user-centered perspective: Assessing the needs of persons with amyotrophic lateral sclerosis, caregivers, and professionals. Appl Ergon. 2015;50:139–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Zickler C, Halder S, Kleih SC, Herbert C, Kübler A. Brain Painting: usability testing according to the user-centered design in end users with severe motor paralysis. Artif Intell Med. 2013;59(2):99–110.CrossRefPubMedGoogle Scholar
  21. 21.
    Peters B, Bieker G, Heckman SM, Huggins JE, Wolf C, Zeitlin D, et al. Brain-computer interface users speak up: the Virtual Users’ Forum at the. 2013 International Brain-Computer Interface Meeting. Arch Phys Med Rehabil. 2015;96(3 Suppl):S33–S7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nijboer F. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities. Ann Phys Rehabil Med. 2015;58(1):35–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Geronimo A, Stephens HE, Schiff SJ, Simmons Z. Acceptance of brain-computer interfaces in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(3–4):258–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Bleichner MG, Jansma JM, Sellmeijer J, Raemaekers M, Ramsey NF. Give me a sign: decoding complex coordinated hand movements using high-field fMRI. Brain Topogr. 2014;27(2):248–57.CrossRefPubMedGoogle Scholar
  25. 25.
    Bleichner MG, Freudenburg ZV, Jansma JM, Aarnoutse EJ, Vansteensel MJ, Ramsey NF. Give me a sign: decoding four complex hand gestures based on high-density ECoG. Brain Struct Funct. 2016;221(1):203–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Branco MP, Freudenburg ZV, Aarnoutse EJ, Bleichner MG, Vansteensel MJ, Ramsey NF. Decoding hand gestures from primary somatosensory cortex using high-density ECoG. Neuroimage. 2017;147:130–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Bruurmijn MLCM, Pereboom IPL, Vansteensel MJ, Raemaekers MAH, Ramsey NF. Preservation of hand movement representation in the sensorimotor areas of amputees. Brain. 2017;140(12):3166–78.CrossRefPubMedGoogle Scholar
  28. 28.
    Bleichner MG, Jansma JM, Salari E, Freudenburg ZV, Raemaekers M, Ramsey NF. Classification of mouth movements using 7 T fMRI. J Neural Eng. 2015;12(6):66026.CrossRefPubMedGoogle Scholar
  29. 29.
    Ramsey NF, Salari E, Aarnoutse EJ, Vansteensel MJ, Bleichner MG, Freudenburg ZV. Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids. Neuroimage. 2017;  https://doi.org/10.1016/j.neuroimage.2017.10.011.Google Scholar
  30. 30.
    Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s Disease. Mov Disord. 2018;33(1):36–47.CrossRefPubMedGoogle Scholar
  31. 31.
    Grill WM. Safety considerations for deep brain stimulation: review and analysis. Expert Rev Med Devices. 2005;2(4):409–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL. Efficacy and safety of pedunculopontine nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci. 2016;43(1):120–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou C, Zhang H, Qin Y, Tian T, Xu B, Chen J, et al. A systematic review and meta-analysis of deep brain stimulation in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017;  https://doi.org/10.1016/j.pnpbp.2017.11.012.Google Scholar
  34. 34.
    The future of brain/neural-computer interaction: Horizon2020. Beschikbaar via http://bnci-horizon-2020.eu/roadmap. Geraadpleegd op: 19 december 2017.Google Scholar
  35. 35.
    Tsou AY, Karlawish J, McCluskey L, Xie SX, Long JA. Predictors of emergent feeding tubes and tracheostomies in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler. 2012;13(3):318–25.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Neudert C, Oliver D, Wasner M, Borasio GD. The course of the terminal phase in patients with amyotrophic lateral sclerosis. J Neurol. 2001;248(7):612–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Chiò A, Calvo A, Ghiglione P, Mazzini L, Mutani R, Mora G, et al. Tracheostomy in amyotrophic lateral sclerosis: a 10-year population-based study in Italy. J Neurol Neurosurg Psychiatr. 2010;81(10):1141–3.CrossRefGoogle Scholar
  38. 38.
    Atsuta N, Watanabe H, Ito M, Tanaka F, Tamakoshi A, Nakano I, et al. Age at onset influences on wide-ranged clinical features of sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2009;276(1–2):163–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Rabkin J, Ogino M, Goetz R, McElhiney M, Hupf J, Heitzman D, et al. Japanese and American ALS patient preferences regarding TIV (tracheostomy with invasive ventilation): a cross-national survey. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(3–4):185–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Ando H, Williams C, Angus RM, Thornton EW, Chakrabarti B, Cousins R, et al. Why don’t they accept non-invasive ventilation?: insight into the interpersonal perspectives of patients with motor neurone disease. Br J Health Psychol. 2015;20(2):341–59.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2018

Authors and Affiliations

  • Mariska J. Vansteensel
    • 1
  • Erik J. Aarnoutse
    • 1
  • Zac V. Freudenburg
    • 1
  • Nick F. Ramsey
    • 1
  1. 1.afdeling Neurologie en Neurochirurgie, Brain Center Rudolf MagnusUniversitair Medisch Centrum UtrechtUtrechtNederland

Personalised recommendations