Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computationele psychiatrie: een toekomst voor wiskundige modellen in de classificatie en behandeling van psychopathologie?

Samenvatting

Het huidige systeem voor psychiatrische diagnostiek en nosologie is voornamelijk gebaseerd op extern waarneembare symptomen en een categorische classificatie. Dit leidt tot heterogeniteit en comorbiditeit tussen diagnosen. Om classificatie te verbeteren en individuele behandeling te bevorderen, is er behoefte aan een meer dimensionale en kwantitatieve benadering, waarmee onderliggende (niet direct waarneembare) processen en mechanismen worden gedefinieerd. Een dergelijke benadering zal leiden tot toepasbare diagnostische tests die zich richten op pathofysiologische mechanismen die ten grondslag liggen aan verstoorde observeerbare cognitieve en emotionele processen en de daaruit voortkomende psychopathologie. Computationele psychiatrie biedt een handvat tot een dergelijke mechanistische benadering. Door middel van non-lineaire wiskundige modellen wordt informatie geïntegreerd over latente processen die ten grondslag liggen aan (verstoord) gedrag, simultaan gemeten breinactiviteit, en zelfs effecten van interventies, zoals hersenstimulatie en farmacologie. De hoop is dat deze benadering zal leiden tot een beter begrip van psychiatrische stoornissen op het niveau van (latente) cognitieve processen en de onderliggende neurobiologie en, daaruit volgend, een verbetering van diagnose en behandeling.

In dit artikel introduceren wij eerst de rationale en werkwijze van de computationele psychiatrie, om vervolgens de stappen te bespreken die naar onze mening genomen moeten worden om een succesvolle bijdrage te leveren aan de psychiatrie en gerelateerde specialismen.

This is a preview of subscription content, log in to check access.

Figuur 1
Figuur 2
Figuur 3
Figuur 4

Literatuur

  1. 1.

    Cressey D. Psychopharmacology in crisis – Researchers warn of “withdrawal of hope” as funding shrivels. Nature. 2011. doi:10.1038/news.2011.367. http://www.nature.com/news/2011/110614/full/news.2011.367.html. Geraadpleegd op: 21 aug. 2015.

  2. 2.

    Nutt D, Goodwin G. ECNP Summit on the future of CNS drug research in Europe 2011: report prepared for ECNP by David Nutt and Guy Goodwin. Eur Neuropsychopharmacol. 2011;21:495–9.

  3. 3.

    Hyman SE. Revolution Stalled. Sci Transl Med. 2012;4:155cm11.

  4. 4.

    Sahakian BJ, Malloch G, Kennard C. A UK strategy for mental health and wellbeing. Lancet. 2010; 375:1854–55.

  5. 5.

    Nutt DJ, Attridge J. CNS drug development in Europe–past progress and future challenges. Neurobiol Dis. 2014;61:6–20.

  6. 6.

    Sutton RS, Barto AG. Reinforcement learning: an introduction Cambridge. Cambridge: MIT Press; 1998.

  7. 7.

    Kishida KT, King-Casas B, Montague PR. Neuroeconomic approaches to mental disorders. Neuron. 2010;67:543–54.

  8. 8.

    Adams RA, Huys QJM, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2015. jnnp-2015-310737. doi:10.1136/jnnp-2015-310737.

  9. 9.

    Huys QJM. Computational Psychiatry. In: Jaeger D, Jung R, redactie. Encyclopedia of computational neuroscience New York. New York: Springer; 2013. pp 1–10.

  10. 10.

    Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14:154–62.

  11. 11.

    Huys QJM, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Netw. 2011;24:544–51.

  12. 12.

    Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012;16:72–80.

  13. 13.

    Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry. 2014;1:148–58.

  14. 14.

    Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014;25:85–92.

  15. 15.

    Wang X-J, Krystal JH. Computational Psychiatry. Neuron. 2014;84:638–54.

  16. 16.

    Huys QJM, Guitart-Masip M, Dolan RJ, Dayan P. Decision-theoretic psychiatry. Clin Psychol Sci. 2015;3:400–21.

  17. 17.

    Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci. 2015;3:378–99.

  18. 18.

    Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. 2012;46:428–35.

  19. 19.

    Computational Psychiatry, CP13. 22–23 October 2013, Miami, Florida. http://computationalpsychiatry.org/. Geraadpleegd op 16 juli 2015.

  20. 20.

    Siddique H. World’s first computational psychiatry centre opens in London. 2014. http://www.theguardian.com/science/2014/apr/02/worlds-first-computational-psychiatry-centre-london. Geraadpleegd op 16 juli 2015.

  21. 21.

    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, homepage. https://www.mps-ucl-centre.mpg.de/en. Geraadpleegd op 16 Juli 2015.

  22. 22.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders: Dsm-5., 5th edn. Arlington: American Psychiatric Publishing; 2013.

  23. 23.

    World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: WHO; 1992.

  24. 24.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fourth edition. Washington, DC: American Psychiatric Publishing; 2001.

  25. 25.

    Charney D, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur R, et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. In: Kupfer DJ, First M, Regier DA, redactie. A Res agenda DSM-V (Vol. 20) Washington, DC: American Psychiatric Association; 2002. pp. 31–83.

  26. 26.

    Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.

  27. 27.

    Forstmann BU, Wagemakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci. 2011;6:272–9.

  28. 28.

    Den Ouden HEM, Kok P, Lange FP de. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012;3:1–12.

  29. 29.

    Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39.

  30. 30.

    Den Ouden HEM, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100.

  31. 31.

    Maia TV. Reinforcement learning, conditioning, and the brain: successes and challenges. Cogn Affect Behav Neurosci. 2009;9:343–64.

  32. 32.

    Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948; 55:189–208.

  33. 33.

    Thorndike EL. Animal intelligence: experimental studies. New York: Macmillian; 1911.

  34. 34.

    Thorndike EL. Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl. 1898;2:1–109.

  35. 35.

    Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8:1704–11.

  36. 36.

    Huys QJM, Cruickshank A, Seriès P. Reward-based learning, model-based and model-free. In: Jaeger D, Jung R, redactie. Encycl Comput Neurosci. New York: Springer; 2014. pp. 1–10.

  37. 37.

    Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69:1204–15.

  38. 38.

    Dolan RJ, Dayan P. Goals and habits in the brain. Neuron. 2013;80:312–25.

  39. 39.

    De Wit S, Corlett PR, Aitken MRF, Dickinson A, Fletcher PC. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci. 2009;29:11330–8.

  40. 40.

    Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009;29:2225–32.

  41. 41.

    Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci. 2009;29:7191–8.

  42. 42.

    Radenbach C, Reiter AMF, Engert V, Sjoerds Z, Villringer A, Heinze H-J, Schlagenhauf F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology. 2015;53:268–80.

  43. 43.

    Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron. 2015;87:621–31.

  44. 44.

    Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.

  45. 45.

    Sjoerds Z, Wit S de, Van Den Brink W, Robbins TW, Beekman ATF, Penninx BWJH, Veltman DJ. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry. 2013;3:e337.

  46. 46.

    O’Tousa D, Grahame N. Habit formation: implications for alcoholism research. Alcohol. 2014;48:327–35.

  47. 47.

    Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev. 2014;47:281–94.

  48. 48.

    Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.

  49. 49.

    Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2014;20:345–52.

  50. 50.

    Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev. 2015;55:247–67.

  51. 51.

    Huys QJM, Daw ND, Dayan P. Depression: a decision-theoretic analysis. Annu Rev Neurosci. 2015;38:1–23.

  52. 52.

    Schlagenhauf F, Huys QJM, Deserno L, Rapp MA, Beck A, Heinze H-J, et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage. 2014;89:171–80.

  53. 53.

    Gruner P, Anticevic A, Lee D, Pittenger C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist. 2015. doi:10.1177/1073858414568317.

  54. 54.

    Lee SW, Shimojo S, O’Doherty JP, Doherty JPO. Neural computations underlying arbitration between model-based and model-free learning. Neuron. 2014;81:687–99.

  55. 55.

    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.

  56. 56.

    Gläscher J, Daw ND, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.

  57. 57.

    Gillan CM, Otto AR, Phelps EA, Daw ND. Model-based learning protects against forming habits. Cogn Affect Behav Neurosci. 2015;15:523–36.

  58. 58.

    Geurts DEM, Huys QJM, Ouden HEM den, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci. 2013;33:18932–9.

  59. 59.

    Rutledge RB, Skandali N, Dayan P, Dolan RJ. Dopaminergic modulation of decision making and subjective well-being. J Neurosci. 2015;35:9811–22.

  60. 60.

    Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. J Cogn Neurosci. 2009;21:1332–45.

  61. 61.

    Deserno L, Huys QJM, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA. 2015;5:1595–1600.

  62. 62.

    Schlagenhauf F, Rapp MA, Huys QJM, Beck A, Wüstenberg T, Deserno L, et al. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp. 2013;34:1490–9.

  63. 63.

    Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi AH, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front Psychol. 2014;5:1450.

  64. 64.

    Deserno L, Wilbertz T, Reiter A, Horstmann A, Villringer A, Heinze H, Schlagenhauf F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl Psychiatry. 2015. (In Press).

  65. 65.

    Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci U S A. 2013;110:20941–6.

  66. 66.

    Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005;17:51–72.

  67. 67.

    Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.

  68. 68.

    Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9:696–709.

  69. 69.

    Chekroud AM. Unifying treatments for depression: an application of the free energy principle. Front Psychol. 2015;6:153.

  70. 70.

    Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111.

  71. 71.

    Robbins TW, Gillan CM, Smith DG, Wit S de, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16:81–91.

  72. 72.

    Daw ND. Trial-by-trial data analysis using computational models. In: Delgado MR, Phelps EA, Robbins TW. Decision making, affect and learning, attention and performance XXIII. New York: Oxford University Press; 2011. pp. 3–38.

  73. 73.

    Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19:1273–302.

  74. 74.

    Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry. 1989;7:59–67.

  75. 75.

    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

Download references

Dankwoord

Graag willen wij een aantal mensen bedanken voor hun kritische blik en input op dit stuk. Drs. Esmée N. Arredondo, psychiater GGZ Noord-Holland Noord, Kliniek Westfriesland; drs. Dirk E.M. Geurts, wetenschappelijk onderzoeker en psychiater in opleiding, Radboud Universiteit Nijmegen en Maudsley Hospital Londen; dr. H.G. (Eric) Ruhe, psychiater en klinisch onderzoeker, stemmings- en angststoornissen, afdeling Psychiatrie Universitair Medisch Centrum Groningen/Rijksuniversiteit Groningen. Daarnaast danken wij voor toestemming voor hergebruik van figuren: prof. dr. Trevor W. Robbins en coauteurs voor fig. 1, dr. Thomas V. Wiecki en coauteurs voor delen uit fig. 3 en dr. Kay H. Brodersen en coauteurs voor fig. 4.

Author information

Correspondence to Dr. Zsuzsika Sjoerds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sjoerds, Z., den Ouden, H. Computationele psychiatrie: een toekomst voor wiskundige modellen in de classificatie en behandeling van psychopathologie?. Neuroprax 19, 141–152 (2015). https://doi.org/10.1007/s12474-015-0102-3

Download citation

Trefwoorden

  • psychiatrie
  • cognitieve neurowetenschappen
  • computationele modellen
  • neurobiologie
  • computationele psychiatrie

Keywords

  • psychiatry
  • cognitive neurosciences
  • computational models
  • neurobiology
  • computational psychiatry