Neuropraxis

, Volume 19, Issue 6, pp 141–152 | Cite as

Computationele psychiatrie: een toekomst voor wiskundige modellen in de classificatie en behandeling van psychopathologie?

Artikel

Samenvatting

Het huidige systeem voor psychiatrische diagnostiek en nosologie is voornamelijk gebaseerd op extern waarneembare symptomen en een categorische classificatie. Dit leidt tot heterogeniteit en comorbiditeit tussen diagnosen. Om classificatie te verbeteren en individuele behandeling te bevorderen, is er behoefte aan een meer dimensionale en kwantitatieve benadering, waarmee onderliggende (niet direct waarneembare) processen en mechanismen worden gedefinieerd. Een dergelijke benadering zal leiden tot toepasbare diagnostische tests die zich richten op pathofysiologische mechanismen die ten grondslag liggen aan verstoorde observeerbare cognitieve en emotionele processen en de daaruit voortkomende psychopathologie. Computationele psychiatrie biedt een handvat tot een dergelijke mechanistische benadering. Door middel van non-lineaire wiskundige modellen wordt informatie geïntegreerd over latente processen die ten grondslag liggen aan (verstoord) gedrag, simultaan gemeten breinactiviteit, en zelfs effecten van interventies, zoals hersenstimulatie en farmacologie. De hoop is dat deze benadering zal leiden tot een beter begrip van psychiatrische stoornissen op het niveau van (latente) cognitieve processen en de onderliggende neurobiologie en, daaruit volgend, een verbetering van diagnose en behandeling.

In dit artikel introduceren wij eerst de rationale en werkwijze van de computationele psychiatrie, om vervolgens de stappen te bespreken die naar onze mening genomen moeten worden om een succesvolle bijdrage te leveren aan de psychiatrie en gerelateerde specialismen.

Trefwoorden

psychiatrie cognitieve neurowetenschappen computationele modellen neurobiologie computationele psychiatrie 

Keywords

psychiatry cognitive neurosciences computational models neurobiology computational psychiatry 

Literatuur

  1. 1.
    Cressey D. Psychopharmacology in crisis – Researchers warn of “withdrawal of hope” as funding shrivels. Nature. 2011. doi:10.1038/news.2011.367. http://www.nature.com/news/2011/110614/full/news.2011.367.html. Geraadpleegd op: 21 aug. 2015.
  2. 2.
    Nutt D, Goodwin G. ECNP Summit on the future of CNS drug research in Europe 2011: report prepared for ECNP by David Nutt and Guy Goodwin. Eur Neuropsychopharmacol. 2011;21:495–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Hyman SE. Revolution Stalled. Sci Transl Med. 2012;4:155cm11.CrossRefPubMedGoogle Scholar
  4. 4.
    Sahakian BJ, Malloch G, Kennard C. A UK strategy for mental health and wellbeing. Lancet. 2010; 375:1854–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Nutt DJ, Attridge J. CNS drug development in Europe–past progress and future challenges. Neurobiol Dis. 2014;61:6–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Sutton RS, Barto AG. Reinforcement learning: an introduction Cambridge. Cambridge: MIT Press; 1998.Google Scholar
  7. 7.
    Kishida KT, King-Casas B, Montague PR. Neuroeconomic approaches to mental disorders. Neuron. 2010;67:543–54.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Adams RA, Huys QJM, Roiser JP. Computational psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2015. jnnp-2015-310737. doi:10.1136/jnnp-2015-310737.Google Scholar
  9. 9.
    Huys QJM. Computational Psychiatry. In: Jaeger D, Jung R, redactie. Encyclopedia of computational neuroscience New York. New York: Springer; 2013. pp 1–10.CrossRefGoogle Scholar
  10. 10.
    Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14:154–62.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Huys QJM, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Netw. 2011;24:544–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012;16:72–80.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry. 2014;1:148–58.CrossRefPubMedGoogle Scholar
  14. 14.
    Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014;25:85–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X-J, Krystal JH. Computational Psychiatry. Neuron. 2014;84:638–54.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Huys QJM, Guitart-Masip M, Dolan RJ, Dayan P. Decision-theoretic psychiatry. Clin Psychol Sci. 2015;3:400–21.CrossRefGoogle Scholar
  17. 17.
    Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci. 2015;3:378–99.CrossRefGoogle Scholar
  18. 18.
    Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. 2012;46:428–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Computational Psychiatry, CP13. 22–23 October 2013, Miami, Florida. http://computationalpsychiatry.org/. Geraadpleegd op 16 juli 2015.
  20. 20.
    Siddique H. World’s first computational psychiatry centre opens in London. 2014. http://www.theguardian.com/science/2014/apr/02/worlds-first-computational-psychiatry-centre-london. Geraadpleegd op 16 juli 2015.
  21. 21.
    Max Planck UCL Centre for Computational Psychiatry and Ageing Research, homepage. https://www.mps-ucl-centre.mpg.de/en. Geraadpleegd op 16 Juli 2015.
  22. 22.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders: Dsm-5., 5th edn. Arlington: American Psychiatric Publishing; 2013.Google Scholar
  23. 23.
    World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: WHO; 1992.Google Scholar
  24. 24.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, fourth edition. Washington, DC: American Psychiatric Publishing; 2001.Google Scholar
  25. 25.
    Charney D, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur R, et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. In: Kupfer DJ, First M, Regier DA, redactie. A Res agenda DSM-V (Vol. 20) Washington, DC: American Psychiatric Association; 2002. pp. 31–83.Google Scholar
  26. 26.
    Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Forstmann BU, Wagemakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci. 2011;6:272–9.CrossRefGoogle Scholar
  28. 28.
    Den Ouden HEM, Kok P, Lange FP de. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012;3:1–12.CrossRefGoogle Scholar
  29. 29.
    Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39.CrossRefPubMedGoogle Scholar
  30. 30.
    Den Ouden HEM, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100.CrossRefPubMedGoogle Scholar
  31. 31.
    Maia TV. Reinforcement learning, conditioning, and the brain: successes and challenges. Cogn Affect Behav Neurosci. 2009;9:343–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948; 55:189–208.CrossRefPubMedGoogle Scholar
  33. 33.
    Thorndike EL. Animal intelligence: experimental studies. New York: Macmillian; 1911.CrossRefGoogle Scholar
  34. 34.
    Thorndike EL. Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl. 1898;2:1–109.Google Scholar
  35. 35.
    Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8:1704–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Huys QJM, Cruickshank A, Seriès P. Reward-based learning, model-based and model-free. In: Jaeger D, Jung R, redactie. Encycl Comput Neurosci. New York: Springer; 2014. pp. 1–10.Google Scholar
  37. 37.
    Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69:1204–15.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Dolan RJ, Dayan P. Goals and habits in the brain. Neuron. 2013;80:312–25.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    De Wit S, Corlett PR, Aitken MRF, Dickinson A, Fletcher PC. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci. 2009;29:11330–8.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci. 2009;29:2225–32.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci. 2009;29:7191–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Radenbach C, Reiter AMF, Engert V, Sjoerds Z, Villringer A, Heinze H-J, Schlagenhauf F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology. 2015;53:268–80.CrossRefPubMedGoogle Scholar
  43. 43.
    Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron. 2015;87:621–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Sjoerds Z, Wit S de, Van Den Brink W, Robbins TW, Beekman ATF, Penninx BWJH, Veltman DJ. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry. 2013;3:e337.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    O’Tousa D, Grahame N. Habit formation: implications for alcoholism research. Alcohol. 2014;48:327–35.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev. 2014;47:281–94.CrossRefPubMedGoogle Scholar
  48. 48.
    Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology. 2014;70:122–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2014;20:345–52.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev. 2015;55:247–67.CrossRefPubMedGoogle Scholar
  51. 51.
    Huys QJM, Daw ND, Dayan P. Depression: a decision-theoretic analysis. Annu Rev Neurosci. 2015;38:1–23.CrossRefPubMedGoogle Scholar
  52. 52.
    Schlagenhauf F, Huys QJM, Deserno L, Rapp MA, Beck A, Heinze H-J, et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage. 2014;89:171–80.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Gruner P, Anticevic A, Lee D, Pittenger C. Arbitration between action strategies in obsessive-compulsive disorder. Neuroscientist. 2015. doi:10.1177/1073858414568317.Google Scholar
  54. 54.
    Lee SW, Shimojo S, O’Doherty JP, Doherty JPO. Neural computations underlying arbitration between model-based and model-free learning. Neuron. 2014;81:687–99.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Gläscher J, Daw ND, Dayan P, O’Doherty JP. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron. 2010;66:585–95.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Gillan CM, Otto AR, Phelps EA, Daw ND. Model-based learning protects against forming habits. Cogn Affect Behav Neurosci. 2015;15:523–36.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Geurts DEM, Huys QJM, Ouden HEM den, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci. 2013;33:18932–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Rutledge RB, Skandali N, Dayan P, Dolan RJ. Dopaminergic modulation of decision making and subjective well-being. J Neurosci. 2015;35:9811–22.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions. J Cogn Neurosci. 2009;21:1332–45.CrossRefPubMedGoogle Scholar
  61. 61.
    Deserno L, Huys QJM, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F. Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA. 2015;5:1595–1600.CrossRefGoogle Scholar
  62. 62.
    Schlagenhauf F, Rapp MA, Huys QJM, Beck A, Wüstenberg T, Deserno L, et al. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp. 2013;34:1490–9.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi AH, et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front Psychol. 2014;5:1450.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Deserno L, Wilbertz T, Reiter A, Horstmann A, Villringer A, Heinze H, Schlagenhauf F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl Psychiatry. 2015. (In Press).Google Scholar
  65. 65.
    Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity protects model-based learning from stress. Proc Natl Acad Sci U S A. 2013;110:20941–6.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005;17:51–72.CrossRefPubMedGoogle Scholar
  67. 67.
    Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Rolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9:696–709.CrossRefPubMedGoogle Scholar
  69. 69.
    Chekroud AM. Unifying treatments for depression: an application of the free energy principle. Front Psychol. 2015;6:153.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Robbins TW, Gillan CM, Smith DG, Wit S de, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16:81–91.CrossRefPubMedGoogle Scholar
  72. 72.
    Daw ND. Trial-by-trial data analysis using computational models. In: Delgado MR, Phelps EA, Robbins TW. Decision making, affect and learning, attention and performance XXIII. New York: Oxford University Press; 2011. pp. 3–38.CrossRefGoogle Scholar
  73. 73.
    Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19:1273–302.CrossRefPubMedGoogle Scholar
  74. 74.
    Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry. 1989;7:59–67.Google Scholar
  75. 75.
    Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum 2015

Authors and Affiliations

  1. 1.Max-Planck fellow-group ‘Cognitive and Affective Control of Behavioural Adaptation’Max-Planck Institute for Human Cognitive and Brain SciencesLeipzigDuitsland
  2. 2.Donders Institute for Brain Cognition and BehaviourRadboud UniversiteitNijmegenNederland

Personalised recommendations