Skip to main content
Log in

Geslachtshormonen en hersenontwikkeling in de puberteit

  • Published:
Neuropraxis

De puberteit is een belangrijke periode gedurende de ontwikkeling die wordt gekenmerkt door een sterke toename in geslachtshormonen. Studies die gebruikmaken van beeldvormingtechnieken, zoals MRI, rapporteren veelvuldig dat de hersenen van gezonde kinderen in de puberteit anatomische veranderingen ondergaan. Het proces van anatomische reorganisatie in de puberteit zou kunnen wijzen op het ‘fine-tunen’ van neuronale netwerken. Deze bewering wordt gesterkt door dierexperimenteel onderzoek, waaruit blijkt dat geslachtshormonen een directe invloed hebben op de vertakking van dendrieten (‘grijze stof’) en de vorming van myeline om axonen (‘witte stof’). Een belangrijke vraag die nu rijst is in hoeverre puberteitshormonen bijdragen aan hersenontwikkeling bij mensen. Dit artikel bespreekt de mogelijke evidentie voor de rol die geslachtshormonen spelen bij de ontwikkeling van grijze en witte stof. We kunnen concluderen dat individuele verschillen in de modulatie van geslachtshormonen op de organisatie van de hersenen aanknopingspunten geven om typisch gedrag in de puberteit te verklaren, zoals verhoogde gevoeligheid voor beloningen, risicogedrag en cognitieve flexibiliteit.

Abstract

Puberty is a critical period during development and is characterized by an increase in levels of sex steroid levels. Human neuroimaging studies have consistently reported that in typically developing pubertal children, the brain undergoes significant structural reorganization that is thought to reflect the fine-tuning of neuronal networks. This notion is supported by animal studies that have shown that sex steroids influence dendritic branching (gray matter) and myelination of axons (white matter). An important question that comes to mind is to what extent pubertal hormones play a role in human brain development during this critical period. In this paper, evidence is provided that sex steroids are involved in gray and white matter development. Individual differences in the modulation of sex steroids and brain restructuring might provide a neuroendocrinological basis for explaining enhanced reward sensitivity, risk taking behaviour and cognitive flexibility during puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1
Figuur 2

Literatuur

  • Angold, A., Costello, E.J. & Worthman, C.M. (1998). Puberty and depression: the roles of age, pubertal status and pubertal timing.Psychological Medicine, 28, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, S.J. (2008). The social brain in adolescence.Nature Reviews Neuroscience, 9, 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, S.J., Burnett, S. & Dahl, R.E. (2010). The role of puberty in the developing adolescent brain.Human Brain Mapping, 31, 926–933.

    Article  PubMed  Google Scholar 

  • Bramen, J.E., Hranilovich, J.A., Dahl, R.E., Forbes, E.E., Chen, J., Toga, A.W., Dinov, I.D., Worthman, C.M. & Sowell, E.R. (2011). Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity.Cerebral Cortex, 21, 636–646.

    Article  PubMed  Google Scholar 

  • Brum, I.S., Spritzer, P.M., Paris, F., Maturana, M.A., Audran, F. & Sultan, C. (2005). Association between androgen receptor gene CAG repeat polymorphism and plasma testosterone levels in postmenopausal women.Journal of the Society for Gynecologic Investigation, 12, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Costello, E.J., Sung, M., Worthman, C. & Angold, A. (2007). Pubertal maturation and the development of alcohol use and abuse. Drugand Alcohol Dependence,88,Suppl 1, S50–59.

    Article  PubMed  Google Scholar 

  • Crone, E.A. (2009). Executive functions in adolescence: inferences from brain and behavior. Developmental Science,12, 825–830.

    Article  PubMed  Google Scholar 

  • Delemarre-van de Waal, H.A., Wennink, J.M. & Odink, R.J. (1991.) Gonadotrophin and growth hormone secretion throughout puberty.Acta Paediatrica Scandinavica, Suppl 372, 26–31.

    Article  Google Scholar 

  • Ernst, M. & Fudge, J.L. (2009). A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience& Biobehavioral Reviews, 33, 367–382.

    Article  Google Scholar 

  • Forbes, E.E. & Dah, R.E. (2010). Pubertal development and behavior: hormonal activation of social and motivational tendencies. Brain and Cognition,72, 66–72.

    Article  PubMed  Google Scholar 

  • Forbes, E.E., Ryan, N.D., Phillips, M.L., Manuck, S.B., Worthman, C.M., Moyles, D.L., Tarr, J.A., Sciarrillo, S.R. & Dahl, R.E. (2010). Healthy adolescents’ neural response to reward: associations with puberty, positive affect, and depressive symptoms.Journal of the American Academy of Child and Adolescent Psychiatry, 49, 162–172 e161–165.

    Google Scholar 

  • Garcia-Segura, L.M. (2009).Hormones and Brain Plasticity. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Giedd, J.N. & Rapoport, J.L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going?Neuron, 67, 728–734.

    Article  PubMed  CAS  Google Scholar 

  • Giedd, J.N., Blumenthal, J., Jeffries, N.O,, Castellanos. F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C. & Rapoport, J.L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study.Nature Neuroscience, 2, 861–863.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. (2011). Gender development and the human brain.Annual Review of Neuroscience,34, 69–88.

    Article  PubMed  CAS  Google Scholar 

  • Kaltiala-Hein, R., Koivisto, A.M., Marttunen, M. & Frojd, S. (2011), Pubertal Timing and Substance Use in Middle Adolescence: A 2-Year Follow-up Study.Journal of Youthand Adolescence.

  • Kessler, R.C., Berglund, P., Demler, O., Jinm R,, Merikangasm K.R. & Walters, E.E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.Archives of General Psychiatry, 62, 593–602.

    Article  PubMed  Google Scholar 

  • McEwen, B.S., Ellendorff, F., Gluckman, P.D., Parvizi, N. (1984). Gonadal hormone receptors in developing and adult brain: relationship to the regulatory phenotype. In:Research in Perinatal Medicine (II), pp. 149–159. Ithaca, New York: Perinatology Press.

  • McEwen, B.S., Biegon, A., Davis, P.G., Krey, L.C., Luine, V.N., McGinnis, M.Y., Paden, C.M., Parsons, B. & Rainbow, T.C. (1982). Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Progressin Hormone Research, 38, 41–92.

    PubMed  CAS  Google Scholar 

  • Neufang, S., Specht, K., Hausmann, M., Gunturkun, O., Herpertz- Dahlmann, B., Fink, G.R. & Konrad, K. (2008). Sex Differences and the Impact of Steroid Hormones on the Developing Human Brain. Cerebral Cortex.

  • Macks, Z.A. op de, Gunther Moor, B., Overgaauw, S., Guroglu, B., Dahl, R.E. & Crone, E.A. (in druk). Testosterone levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents.Developmental Cognitive Neuroscience.

  • Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trendsin CognitiveSciences, 9, 60–68.

    Article  PubMed  Google Scholar 

  • Paus, T., Keshavan, M. & Giedd, J.N. (2008). Why do many psychiatric disorders emerge during adolescence?Nature Reviews Neuroscience, 9, 947–957.

    PubMed  CAS  Google Scholar 

  • Peper, J.S., Heuvel, M.P. van den, Mandl, R.C.W., HulshoffPol, H.E. & Honk, J van (2011). Sex steroids and connectivity in the human brain: a review of neuroimaging studies.Psychoneuroendocrinology, 8, 1101–1113.

    Article  Google Scholar 

  • Peper, J.S., Brouwe,r R.M., Schnack, H.G., Baal, G.C. van, Leeuwen, M. van, Berg, S.M. van den, Delemarre-Van de Waal, H.A-, Boomsma. D.I., Kahn, R.S. & HulshoffPol, H.E. (2009). Sex steroids and brain structure in pubertal boys and girls.Psychoneuroendocrinology. 34, 332–342.

    Article  PubMed  CAS  Google Scholar 

  • Peper, J.S., Brouwer RM, Schnack, H.G., Baal, G.C. van, Leeuwen, M. van, Berg, S.M. van den, Delemarre-Van de Waal, H.A., Janke, A..L, Collins, D.L., Evans, A.C., Boomsma, D.I., Kahn, R.S. & HulshoffPol, H.E. (2008). Cerebral white matter in early puberty is associated with luteinizing hormone concentrations.Psychoneuroendocrinology, 33, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, J.S., Herve, P.Y., Leonard, G., Perron, M., Pike, G.B., Pitiot, A., Richer, L., Veillettem S,, Pausova, Z. & Paus, T. (2008). Growth of white matter in the adolescent brain: role of testosterone and androgen receptor.Journal of Neuroscience, 28, 9519–9524.

    Article  PubMed  CAS  Google Scholar 

  • Phoenix, C.H., Goy, R.W., Gerall, A.A. & Young, W.C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig.Endocrinology, 65, 369–382.

    Article  PubMed  CAS  Google Scholar 

  • Raznahan, A., Shaw, P., Lalonde, F,, Stockman, M., Wallace, G.L., Greenstein, D., Clasen, L., Gogtay, N. & Giedd, J.N. (2011). How does your cortex grow?Journal of Neuroscience, 31, 7174–7177.

    Article  PubMed  CAS  Google Scholar 

  • Raznahan, A., Lee, Y., Stidd, R., Long, R., Greenstein, D., Clasen, L., Addington, A., Gogtay, N., Rapoport, J.L. & Giedd, J.N. (2010). Longitudinally mapping the influence of sex and androgen signaling on the dynamics of human cortical maturation in adolescence.Proceedings of the National Academy of Sciences of the United States of America, 107, 16988–16993.

    Article  PubMed  CAS  Google Scholar 

  • Romeo, R.D. (2003). Puberty: a period of both organizational and activational effects of steroid hormones on neurobehavioural development.Journal of Neuroendocrinology, 15, 1185–1192.

    Article  PubMed  CAS  Google Scholar 

  • Romer, D. (2010). Adolescent risk taking, impulsivity, and brain development: implications for prevention.Developmental Psychobiology,52, :263–276.

    Google Scholar 

  • Schulz, K.M., Molenda-Figueira, H.A. & Sisk, C.L. (2009). Back to the future: The organizational-activational hypothesis adapted to puberty and adolescence.Hormones and Behavior,55, 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Schutter, D.J. & Honk, J. van (2004). Decoupling of midfrontal deltabeta oscillations after testosterone administration.International Journal of Psychophysiology, 53, 71–73.

    Article  PubMed  Google Scholar 

  • Sherman, D.L. & Brophy, P.J (2005). Mechanisms of axon ensheathment and myelin growth.Nature Reviews Neuroscience, 6, 683–690.

    Article  PubMed  CAS  Google Scholar 

  • Simerly, R.B., Chang, C., Muramatsu, M., Swanson, L.W. (1990). Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study.Journal of Comparative Neurology,294, 76–95.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, L.H., Hare, T., Casey, B.J. (2010), Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents.Journal of Cognitive Neuroscience.

  • Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L. & Toga, A.W. (2003). Mapping cortical change across the human life span.Nature Neuroscience, 6, 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Spear, L.P. (2010).The behavioral neuroscience of adolescence, 1st Edition. New York: WW Norton & Company Inc.

    Google Scholar 

  • Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S. & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model.Developmental Psychology, 44, 1764–1778.

    Article  PubMed  Google Scholar 

  • Thompson, P.M., Giedd, J.N., Woods, R.P., MacDonald, D., Evans, A.C. & Toga, A.W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps.Nature, 404, 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Leijenhorst, L. van, Gunther Moor, B., Macks, Z.A. op de, Rombo, S.A., Westenberg, P.M-, Crone. E.A. (2010). Adolescent risky decisionmaking: neurocognitive development of reward and control regions.Neuroimage, 51, 345–355.

    Article  PubMed  Google Scholar 

  • Wingen, G. van, Mattern, C., Verkes, R.J., Buitelaar, J. & Fernandez, G. (2010). Testosterone reduces amygdala-orbitofrontal cortex coupling.Psychoneuroendocrinology, 35, 105–113.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

neuropsychologe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peper, J. Geslachtshormonen en hersenontwikkeling in de puberteit. NEUROPRAXIS 15, 178–183 (2011). https://doi.org/10.1007/s12474-011-0032-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12474-011-0032-7

Navigation