Skip to main content

Space–time classification of public transit smart card users’ activity locations from smart card data


Smart card data from public transit systems has proven to be useful to understand the behaviors of public transit users. Relevant research has been done concerning: (1) the utilization of smart card data, (2) data mining techniques and (3) the utilization of data mining in smart card data. In prior research, the classification of user behavior has been based on trips when temporal and spatial classifications are considered to be separate processes. Therefore, it is of interest to develop a method based on users' daily behaviors that takes into account both spatial and temporal behaviors at the same time. In this work, a methodology is developed to classify smart card users' behaviors based on dynamic time warping (DTW), hierarchical clustering and a sampling method. A three-dimensional space–time prism plot demonstrates the efficiency of the algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Agard B, Morency C, Trépanier M (2006) Mining public transport user behaviour from smart card data. IFAC Proc Vol 39(3): 399–404

    Article  Google Scholar 

  2. Asakura Y, Iryo T, Nakajima Y, Kusakabe T (2012) Estimation of behavioural change of railway passengers using smart card data. Public Transp 4(1):1–16

    Article  Google Scholar 

  3. Black PE (2006) Manhattan distance. Dictionary of algorithms and data structures.

  4. Briand AS, Côme E, Trépanier M, Oukhellou L (2017) Analyzing year-to-year changes in public transport passenger behavior using smart card data. Transp Res Part C Emerg Technol 79:274–289

    Article  Google Scholar 

  5. Bunker JM (2018) High volume bus stop upstream average waiting time for working capacity and quality of service. Public Transp 10(2):311–333

    Article  Google Scholar 

  6. Ceapa I, Smith C, Capra L (2012) Avoiding the crowds: understanding tube station congestion patterns from trip data. In: Proceedings of the ACM SIGKDD international workshop on urban computing, pp 134–141. ACM

  7. Chevalier F, Le Bellac J (2013) La classification. Université de Rennes.

  8. Chu KA, Chapleau R (2008) Enriching archived smart card transaction data for transit demand modeling. Transp Res Rec J Transp Res Board 2063:63–72

    Article  Google Scholar 

  9. Covic F, Voß S (2019) Interoperable smart card data management in public mass transit. Public Transp 11(3):523–548

    Article  Google Scholar 

  10. de Oña R, de Oña J (2015) Analysis of transit quality of service through segmentation and classification tree techniques. Transportmetrica A Transp Sci 11(5):365–387

    Article  Google Scholar 

  11. Deza MM, Deza E (2009) Encyclopedia of distances, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  12. Diab EI, El-Geneidy AM (2013) Variation in bus transit service: understanding the impacts of various improvement strategies on transit service reliability. Public Transp 4(3):209–231

    Article  Google Scholar 

  13. El-Geneidy AM, Surprenant-Legault J (2010) Limited-stop bus service: an evaluation of an implementation strategy. Public Transp 2(4):291–306

    Article  Google Scholar 

  14. Farber S, O’Kelly M, Miller HJ, Neutens T (2015) Measuring segregation using patterns of daily travel behavior: a social interaction based model of exposure. J Transp Geogr 49:26–38

    Article  Google Scholar 

  15. Ghaemi MS, Agard B, Nia VP, Trépanier M (2015) Challenges in spatial-temporal data analysis targeting public transport. IFAC-PapersOnLine 48(3):442–447

    Article  Google Scholar 

  16. Ghaemi MS, Agard B, Trépanier M, Partovi Nia V (2017) A visual segmentation method for temporal smart card data. Transportmetrica A Transp Sci 13(5):381–404

    Article  Google Scholar 

  17. Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw package. J Stat Softw 31(7):1–24

    Article  Google Scholar 

  18. He L, Trépanier M (2015) Estimating the destination of unlinked trips in transit smart card fare data. Transp Res Rec J Transp Res Board 2535:97–104

    Article  Google Scholar 

  19. He L, Trépanier M, Hickman M, Nassir N (2015) Validating and calibrating a destination estimation algorithm for public transport smart card fare collection systems (No. CIRRELT-2015-52). CIRRELT, Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport= Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

  20. He L, Trépanier M, Agard B (2019) Sampling method applied to the clustering of temporal patterns of public transit smart card users. CIRRELT research paper, CIRRELT-2019-30, p 18

  21. He L, Agard B, Trépanier M (2020) A classification of public transit users with smart card data based on time series distance metrics and a hierarchical clustering method. Transportmetrica A Transp Sci 16(1):56–75

    Article  Google Scholar 

  22. Imaz A, Habib KMN, Shalaby A, Idris AO (2015) Investigating the factors affecting transit user loyalty. Public Transp 7(1):39–60

    Article  Google Scholar 

  23. Kieu LM, Bhaskar A, Chung E (2014) Transit passenger segmentation using travel regularity mined from Smart Card transactions data. In: Proc., Transportation Research Board 93rd annual meeting, National Research Council, Washington, DC

  24. Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based clustering. Wiley Interdiscipl Rev Data Min Knowl Discov 1(3):231–240

    Article  Google Scholar 

  25. Kurauchi F, Schmöcker JD, Shimamoto H, Hassan SM (2014) Variability of commuters’ bus line choice: an analysis of oyster card data. Public Transp 6(1–2):21–34

    Article  Google Scholar 

  26. Lee SG, Hickman M (2014) Trip purpose inference using automated fare collection data. Public Transp 6(1–2):1–20

    Article  Google Scholar 

  27. Ma X, Wu YJ, Wang Y, Chen F, Liu J (2013) Mining smart card data for transit riders’ travel patterns. Transp Res Part C Emerg Technol 36:1–12

    Article  Google Scholar 

  28. Morency C, Trépanier M, Agard B (2006) Analysing the variability of transit users behavior with smart card data. In: Intelligent transportation systems conference, 2006. ITSC'06. IEEE, pp 44–49

  29. Morency C, Trépanier M, Agard B (2007) Measuring transit use variability with smart-card data. Transp Policy 14(3):193–203

    Article  Google Scholar 

  30. Mori U, Mendiburu A, Lozano JA (2016) Distance measures for time series in R: the TSdist package. The R Journal 8(2):451–459

    Article  Google Scholar 

  31. Nagy V, Horváth B, Horváth R (2017) Land-use zone estimation in public transport planning with data mining. Transp Res Procedia 27:1050–1057

    Article  Google Scholar 

  32. Nishiuchi H, Kobayashi Y, Todoroki T, Kawasaki T (2018) Impact analysis of reductions in tram services in rural areas in Japan using smart card data. Public Transp 10(2):291–309

    Article  Google Scholar 

  33. Pelletier MP, Trépanier M, Morency C (2011) Smart card data use in public transit: a literature review. Transp Res Part C Emerg Technol 19(4):557–568

    Article  Google Scholar 

  34. Rokach L, Maimon O (2005) Clustering methods. Data mining and knowledge discovery handbook. Springer, Boston, pp 321–352

    Chapter  Google Scholar 

  35. Shi X, Hangfei L (2014) The analysis of bus commuters’ travel characteristics using smart card data: the case of Shenzhen, China. In: 93rd annual meeting of the Transportation Research Board, Washington, D.C. (No. 14-2571)

  36. Sun Y, Shi J, Schonfeld PM (2016) Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro. Public Transp 8(3):341–363

    Article  Google Scholar 

  37. Trépanier M, Barj S, Dufour C, Poilpré R (2004) Examen des potentialités d'analyse des données d'un système de paiement par carte à puce en transport urbain. In: Congrès de l'Association des transports du Canada

  38. Trépanier M, Chapleau R, Tranchant N (2007) Individual trip destination estimation in a transit smart card automated fare collection system. J Intell Transp Syst 11(1):1–14

    Article  Google Scholar 

  39. Viggiano C, Koutsopoulos HN, Wilson NH, Attanucci J (2017) Journey-based characterization of multi-modal public transportation networks. Public Transp 9(1–2):437–461

    Article  Google Scholar 

  40. Yoon H, Shahabi C (2008) Robust time-referenced segmentation of moving object trajectories. In: 2008 eighth IEEE international conference on data mining, pp 1121–1126. IEEE

  41. Yuan Y, Raubal M (2014) Measuring similarity of mobile phone user trajectories—a spatio-temporal edit distance method. Int J Geogr Inf Sci 28(3):496–520

    Article  Google Scholar 

Download references


The authors wish to acknowledge the support of the Société de transport de l’Outaouais (STO) for providing data, the Thales group and the Natural Science and Engineering Research Council of Canada (NSERC project RDCPJ 446107-12) for funding.

Author information



Corresponding author

Correspondence to Li He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, L., Trépanier, M. & Agard, B. Space–time classification of public transit smart card users’ activity locations from smart card data. Public Transp (2021).

Download citation


  • Public transit
  • Smart card data
  • Dynamic time warping
  • Spatiotemporal classification
  • Activity locations