Abstract
This paper defines and solves a mathematical model for finding robust periodic timetables by proposing an extension of the Periodic Event Scheduling Problem (PESP). In order to model delayed and non-nominal travel times already in the timetabling step, the aim of this paper is to integrate delay management into the periodic timetabling problem and investigating the resulting problem (RPT). After revisiting both (PESP) and delay management individually, we introduce a periodic delay management model – an auxiliary model capable of evaluating periodic timetables with respect to delay resistance. Having introduced periodic delay management, we define the robust periodic timetabling problem (RPT). Due to the high complexity of the robust periodic timetabling problem we propose two different simplifications of the problem and introduce solution algorithms for both of them. These solution algorithms are tested against timetables found by standard procedures for periodic timetabling with respect to their delay-resistance. The computational results show that our algorithms yield timetables which can cope better with occurring delays, even on large-scale datasets and with low computational effort.





Similar content being viewed by others
References
Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, New Jersey
Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Progr 99(2):351–376
Berger A, Hoffmann R, Lorenz U, Stiller S (2011) Online railway delay management: Hardness, simulation and computation. Simulation 87(7):616–629
Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501
Borndörfer R, Hoppmann H, Karbstein M (2017) Passenger routing for periodic timetable optimization. Public Transp 9(1–2):115–135
Borndörfer R, Hoppmann H, Karbstein M, Lindner N (2018) Separation of cycle inequalities in periodic timetabling. Tech Rep 18-16, ZIB, Takustr. 7, 14195 Berlin
Borndörfer R, Lindner N, Roth S (2019) A concurrent approach to the periodic event scheduling problem. Tech Rep 19-07, ZIB, Takustr. 7, 14195 Berlin
Burggraeve S, Bull S, Vansteenwegen P, Lusby R (2017) Integrating robust timetabling in line plan optimization for railway systems. Transp Res Part C Emerg Technol 77:134–160
Cacchiani V, Caprara A, Fischetti M (2012) A lagrangian heuristic for robustness, with an application to train timetabling. Transp Sci 46(1):124–133
Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res 219(3):727–737
Caimi G, Fuchsberger M, Laumanns M, Schüpbach K (2011) Periodic railway timetabling with event flexibility. Networks 57(1):3–18
Connolly K (2018) ’We are becoming a joke’: Germans turn on Deutsche Bahn. https://www.theguardian.com/world/2018/dec/20/trains-on-time-germans-deutsche-bahn-railway
De Giovanni L, Heilporn G, Labbé M (2008) Optimization models for the single delay management problem in public transportation. Eur J Oper Res 189(3):762–774
Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89
Dollevoet T, Huisman D, Schmidt M, Schöbe, A (2018) Delay propagation and delay management in transportation networks. In: Handbook of Optimization in the Railway Industry, pp. 285–317. Springer
Fischetti M, Salvagnin D, Zanette A (2009) Fast approaches to improve the robustness of a railway timetable. Transp Sci 43(3):321–335
Gattermann P, Großmann P, Nachtigall K, Schöbel A (2016) Integrating Passengers’ Routes in Periodic Timetabling: A SAT approach. In: Goerigk M, Werneck R (eds) 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs), vol 54. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 3:1–3:15. https://doi.org/10.4230/OASIcs.ATMOS.2016.3
Goerigk M (2018) PESPlib - A benchmark library for periodic event scheduling. http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
Goerigk M (2015) Exact and heuristic approaches to the robust periodic event scheduling problem. Public Transp 7(1):101–119
Goerigk M, Liebchen C (2017) An Improved Algorithm for the Periodic Timetabling Problem. In: D’Angelo G, Dollevoet T (eds) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs), vol 59. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 12:1–12:14. https://doi.org/10.4230/OASIcs.ATMOS.2017.12
Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. In: Erlebach T, Lübbecke M (eds.) Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 100–113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://dx.doi.org/10.4230/OASIcs.ATMOS.2010.100
Goerigk M, Schöbel A (2013) Improving the modulo simplex algorithm for large-scale periodic timetabling. Comp Oper Res 40(5):1363–1370
Goerigk M, Schöbel A (2014) Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Comp Oper Res 52:1–15
Goerigk M, Schöbel A (2016) Algorithm engineering in robust optimization. In: Kliemann L, Sanders P (eds) Algorithm engineering: selected results and surveys. Lecture Notes in Computer Science, vol 9220, pp 245–279. https://doi.org/10.1007/978-3-319-49487-6_8
Großmann P, Hölldobler S, Manthey N, Nachtigall K, Opitz J, Steinke P (202) Solving periodic event scheduling problems with SAT. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 166–175
Hartleb J, Schmidt M, Friedrich M, Huisman D (2019) A good or a bad timetable: Do different evaluation functions agree? ERIM Report Series, Rotterdam
Kroon L, Maróti G, Helmrich MR, Vromans M, Dekker R (2008) Stochastic improvement of cyclic railway timetables. Transp Res Part B Methodol 42(6):553–570
Kroon LG, Dekker R, Vromans MJ (2007) Cyclic railway timetabling: a stochastic optimization approach. In: Algorithmic methods for railway optimization, pp. 41–66. Springer
Liebchen C (2007) Periodic timetable optimization in public transport. In: Operations research proceedings 2006. Springer, pp 29–36
Liebchen C, Lübbecke M, Möhring R, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: Robust and online large-scale optimization, vol 5868 of Lecture Notes in Computer Science, pp. 1–27. Springer. https://doi.org/10.1007/978-3-642-05465-5_1
Liebchen C, Schachtebeck M, Schöbel A, Stiller S, Prigge A (2010) Computing delay-resistant railway timetables. Comp Oper Res 37:857–868
Lu C, Tang J, Zhou L, Yue Y, Huang Z (2017) Improving recovery-to-optimality robustness through efficiency-balanced design of timetable structure. Transp Res Part C Emerg Technol 85:184–210
Lusby RM, Larsen J, Bull S (2018) A survey on robustness in railway planning. Eur J Oper Res 266(1):1–15
Maróti G (2017) A branch-and-bound approach for robust railway timetabling. Public Transp 9(1–2):73–94. https://doi.org/10.1007/s12469-016-0143-x
Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Flugführung, Braunschweig
Nachtigall K, Opitz J (2008) Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In: Fischetti M, Widmayer P (eds) 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), OpenAccess Series in Informatics (OASIcs), vol. 9. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
Odijk MA (1996) A constraint generation algorithm for the construction of periodic railway timetables. Transp Res Part B Methodol 30(6):455–464
Pätzold J, Schiewe A, Schiewe P, Schöbel A (2017) Look-Ahead Approaches for Integrated Planning in Public Transportation. In: D’Angelo G, Dollevoet T (eds) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs), vol 59. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 1–16. https://doi.org/10.4230/OASIcs.ATMOS.2017.17
Pätzold J, Schiewe A, Schöbel A (2018) Cost-minimal public transport planning. In: Borndörfer R, Storandt S (eds) 18th Workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2018), OpenAccess Series in Informatics (OASIcs), vol 65. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 8:1–8:22. https://doi.org/10.4230/OASIcs.ATMOS.2018.8
Pätzold J, Schöbel, A (2016) A matching approach for periodic timetabling. In: Goerigk M, Werneck R (eds.) 16th workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs), vol. 54, pp. 1–15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.ATMOS.2016.11
Pätzold J, Schöbel A (2020) Approximate cutting plane approaches for exact solutions to robust optimization problems. Eur J Oper Res 284(1):20–30
Peeters L, Kroon L (2001) A cycle based optimization model for the cyclic railway timetabling problem. In: Computer-aided scheduling of public transport, pp. 275–296. Springer
Peeters LL (2003) Cyclic railway timetable optimization. EPS-2003-022-LIS
Petersen H, Larsen A, Madsen O, Petersen B, Ropke S (2013) The simultaneous vehicle scheduling and passenger service problem. Transp Sci 47(4):603–616
Polinder GJ, Breugem T, Dollevoet T, Maróti G (2019) An adjustable robust optimization approach for periodic timetabling. Transp Res Part B: Methodol 128:50–68
Schachtebeck M, Schöbel A (2010) To wait or not to wait and who goes first? Delay management with priority decisions. Transp Sci 44(3):307–321. https://doi.org/10.1287/trsc.1100.0318
Schiewe A, Albert S, Pätzold J, Schiewe P, Schöbel A, Schulz J (2018) LinTim: An integrated environment for mathematical public transport optimization. Documentation. Tech Rep 2018-08, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik. Georg-August-Universität Göttingen
Schiewe P, Schöbel A (2020) Periodic timetabling with integrated routing: Toward applicable approaches. Transp Sci 54(6):1714–1731
Schmidt M (2014) Integrating Routing Decisions in Public Transportation Problems. Optimization and its applications. Springer, Berlin
Schmidt M, Schöbel A (2015a) The complexity of integrating routing decisions in public transportation models. Networks 65(3):228–243
Schmidt M, Schöbel A (2015b) Timetabling with passenger routing. OR Spectrum 37:75–97
Schöbel A (2001) A model for the delay management problem based on mixed-integer-programming. Electron Notes Theoretical Comp Sci 50(1):1–10
Schöbel A (2006) Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. Optimization and its applications. Springer, Berlin
Schöbel A (2007) Integer programming approaches for solving the delay management problem. In: Algorithmic Methods for Railway Optimization, no. 4359 in Lecture Notes in Computer Science, pp. 145–170. Springer
Schöbel A (2017) An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transp Res Part C: Emerg Technol 74:348–365
Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J Discrete Mathem 2(4):550–581
Siebert M, Goerigk M (2013) An experimental comparison of periodic timetabling models. Comp Oper Res 40(10):2251–2259
Sinha A, Malo P, Deb K (2018) A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation 22(2):276–295
Suhl L, Biederbick C, Kliewer N (2001) Design of customer-oriented dispatching support for railways. In: Voß S, Daduna J (eds) Computer-aided transit scheduling. Lecture Notes in Economics and Mathematical Systems, vol 505. Springer, pp 365–386
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Partially funded by the Simulation Science Center Clausthal-Göttingen (SWZ).
Rights and permissions
About this article
Cite this article
Pätzold, J. Finding robust periodic timetables by integrating delay management. Public Transp 13, 349–374 (2021). https://doi.org/10.1007/s12469-020-00260-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12469-020-00260-y


