Skip to main content
Log in

Finding robust periodic timetables by integrating delay management

  • Original Research
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

This paper defines and solves a mathematical model for finding robust periodic timetables by proposing an extension of the Periodic Event Scheduling Problem (PESP). In order to model delayed and non-nominal travel times already in the timetabling step, the aim of this paper is to integrate delay management into the periodic timetabling problem and investigating the resulting problem (RPT). After revisiting both (PESP) and delay management individually, we introduce a periodic delay management model – an auxiliary model capable of evaluating periodic timetables with respect to delay resistance. Having introduced periodic delay management, we define the robust periodic timetabling problem (RPT). Due to the high complexity of the robust periodic timetabling problem we propose two different simplifications of the problem and introduce solution algorithms for both of them. These solution algorithms are tested against timetables found by standard procedures for periodic timetabling with respect to their delay-resistance. The computational results show that our algorithms yield timetables which can cope better with occurring delays, even on large-scale datasets and with low computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Progr 99(2):351–376

    Article  Google Scholar 

  • Berger A, Hoffmann R, Lorenz U, Stiller S (2011) Online railway delay management: Hardness, simulation and computation. Simulation 87(7):616–629

    Article  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  Google Scholar 

  • Borndörfer R, Hoppmann H, Karbstein M (2017) Passenger routing for periodic timetable optimization. Public Transp 9(1–2):115–135

    Article  Google Scholar 

  • Borndörfer R, Hoppmann H, Karbstein M, Lindner N (2018) Separation of cycle inequalities in periodic timetabling. Tech Rep 18-16, ZIB, Takustr. 7, 14195 Berlin

  • Borndörfer R, Lindner N, Roth S (2019) A concurrent approach to the periodic event scheduling problem. Tech Rep 19-07, ZIB, Takustr. 7, 14195 Berlin

  • Burggraeve S, Bull S, Vansteenwegen P, Lusby R (2017) Integrating robust timetabling in line plan optimization for railway systems. Transp Res Part C Emerg Technol 77:134–160

    Article  Google Scholar 

  • Cacchiani V, Caprara A, Fischetti M (2012) A lagrangian heuristic for robustness, with an application to train timetabling. Transp Sci 46(1):124–133

    Article  Google Scholar 

  • Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res 219(3):727–737

    Article  Google Scholar 

  • Caimi G, Fuchsberger M, Laumanns M, Schüpbach K (2011) Periodic railway timetabling with event flexibility. Networks 57(1):3–18

    Article  Google Scholar 

  • Connolly K (2018) ’We are becoming a joke’: Germans turn on Deutsche Bahn. https://www.theguardian.com/world/2018/dec/20/trains-on-time-germans-deutsche-bahn-railway

  • De Giovanni L, Heilporn G, Labbé M (2008) Optimization models for the single delay management problem in public transportation. Eur J Oper Res 189(3):762–774

    Article  Google Scholar 

  • Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89

    Article  Google Scholar 

  • Dollevoet T, Huisman D, Schmidt M, Schöbe, A (2018) Delay propagation and delay management in transportation networks. In: Handbook of Optimization in the Railway Industry, pp. 285–317. Springer

  • Fischetti M, Salvagnin D, Zanette A (2009) Fast approaches to improve the robustness of a railway timetable. Transp Sci 43(3):321–335

    Article  Google Scholar 

  • Gattermann P, Großmann P, Nachtigall K, Schöbel A (2016) Integrating Passengers’ Routes in Periodic Timetabling: A SAT approach. In: Goerigk M, Werneck R (eds) 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs), vol 54. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 3:1–3:15. https://doi.org/10.4230/OASIcs.ATMOS.2016.3

    Chapter  Google Scholar 

  • Goerigk M (2018) PESPlib - A benchmark library for periodic event scheduling. http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

  • Goerigk M (2015) Exact and heuristic approaches to the robust periodic event scheduling problem. Public Transp 7(1):101–119

    Article  Google Scholar 

  • Goerigk M, Liebchen C (2017) An Improved Algorithm for the Periodic Timetabling Problem. In: D’Angelo G, Dollevoet T (eds) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs), vol 59. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 12:1–12:14. https://doi.org/10.4230/OASIcs.ATMOS.2017.12

    Chapter  Google Scholar 

  • Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. In: Erlebach T, Lübbecke M (eds.) Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 100–113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. http://dx.doi.org/10.4230/OASIcs.ATMOS.2010.100

  • Goerigk M, Schöbel A (2013) Improving the modulo simplex algorithm for large-scale periodic timetabling. Comp Oper Res 40(5):1363–1370

    Article  Google Scholar 

  • Goerigk M, Schöbel A (2014) Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Comp Oper Res 52:1–15

    Article  Google Scholar 

  • Goerigk M, Schöbel A (2016) Algorithm engineering in robust optimization. In: Kliemann L, Sanders P (eds) Algorithm engineering: selected results and surveys. Lecture Notes in Computer Science, vol 9220, pp 245–279. https://doi.org/10.1007/978-3-319-49487-6_8

  • Großmann P, Hölldobler S, Manthey N, Nachtigall K, Opitz J, Steinke P (202) Solving periodic event scheduling problems with SAT. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 166–175

  • Hartleb J, Schmidt M, Friedrich M, Huisman D (2019) A good or a bad timetable: Do different evaluation functions agree? ERIM Report Series, Rotterdam

  • Kroon L, Maróti G, Helmrich MR, Vromans M, Dekker R (2008) Stochastic improvement of cyclic railway timetables. Transp Res Part B Methodol 42(6):553–570

    Article  Google Scholar 

  • Kroon LG, Dekker R, Vromans MJ (2007) Cyclic railway timetabling: a stochastic optimization approach. In: Algorithmic methods for railway optimization, pp. 41–66. Springer

  • Liebchen C (2007) Periodic timetable optimization in public transport. In: Operations research proceedings 2006. Springer, pp 29–36

  • Liebchen C, Lübbecke M, Möhring R, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: Robust and online large-scale optimization, vol 5868 of Lecture Notes in Computer Science, pp. 1–27. Springer. https://doi.org/10.1007/978-3-642-05465-5_1

  • Liebchen C, Schachtebeck M, Schöbel A, Stiller S, Prigge A (2010) Computing delay-resistant railway timetables. Comp Oper Res 37:857–868

    Article  Google Scholar 

  • Lu C, Tang J, Zhou L, Yue Y, Huang Z (2017) Improving recovery-to-optimality robustness through efficiency-balanced design of timetable structure. Transp Res Part C Emerg Technol 85:184–210

    Article  Google Scholar 

  • Lusby RM, Larsen J, Bull S (2018) A survey on robustness in railway planning. Eur J Oper Res 266(1):1–15

    Article  Google Scholar 

  • Maróti G (2017) A branch-and-bound approach for robust railway timetabling. Public Transp 9(1–2):73–94. https://doi.org/10.1007/s12469-016-0143-x

    Article  Google Scholar 

  • Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Flugführung, Braunschweig

  • Nachtigall K, Opitz J (2008) Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In: Fischetti M, Widmayer P (eds) 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), OpenAccess Series in Informatics (OASIcs), vol. 9. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.ATMOS.2008.1588

    Chapter  Google Scholar 

  • Odijk MA (1996) A constraint generation algorithm for the construction of periodic railway timetables. Transp Res Part B Methodol 30(6):455–464

    Article  Google Scholar 

  • Pätzold J, Schiewe A, Schiewe P, Schöbel A (2017) Look-Ahead Approaches for Integrated Planning in Public Transportation. In: D’Angelo G, Dollevoet T (eds) 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs), vol 59. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 1–16. https://doi.org/10.4230/OASIcs.ATMOS.2017.17

    Chapter  Google Scholar 

  • Pätzold J, Schiewe A, Schöbel A (2018) Cost-minimal public transport planning. In: Borndörfer R, Storandt S (eds) 18th Workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2018), OpenAccess Series in Informatics (OASIcs), vol 65. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 8:1–8:22. https://doi.org/10.4230/OASIcs.ATMOS.2018.8

    Chapter  Google Scholar 

  • Pätzold J, Schöbel, A (2016) A matching approach for periodic timetabling. In: Goerigk M, Werneck R (eds.) 16th workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs), vol. 54, pp. 1–15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.ATMOS.2016.11

  • Pätzold J, Schöbel A (2020) Approximate cutting plane approaches for exact solutions to robust optimization problems. Eur J Oper Res 284(1):20–30

    Article  Google Scholar 

  • Peeters L, Kroon L (2001) A cycle based optimization model for the cyclic railway timetabling problem. In: Computer-aided scheduling of public transport, pp. 275–296. Springer

  • Peeters LL (2003) Cyclic railway timetable optimization. EPS-2003-022-LIS

  • Petersen H, Larsen A, Madsen O, Petersen B, Ropke S (2013) The simultaneous vehicle scheduling and passenger service problem. Transp Sci 47(4):603–616

    Article  Google Scholar 

  • Polinder GJ, Breugem T, Dollevoet T, Maróti G (2019) An adjustable robust optimization approach for periodic timetabling. Transp Res Part B: Methodol 128:50–68

    Article  Google Scholar 

  • Schachtebeck M, Schöbel A (2010) To wait or not to wait and who goes first? Delay management with priority decisions. Transp Sci 44(3):307–321. https://doi.org/10.1287/trsc.1100.0318

    Article  Google Scholar 

  • Schiewe A, Albert S, Pätzold J, Schiewe P, Schöbel A, Schulz J (2018) LinTim: An integrated environment for mathematical public transport optimization. Documentation. Tech Rep 2018-08, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik. Georg-August-Universität Göttingen

  • Schiewe P, Schöbel A (2020) Periodic timetabling with integrated routing: Toward applicable approaches. Transp Sci 54(6):1714–1731

    Article  Google Scholar 

  • Schmidt M (2014) Integrating Routing Decisions in Public Transportation Problems. Optimization and its applications. Springer, Berlin

    Book  Google Scholar 

  • Schmidt M, Schöbel A (2015a) The complexity of integrating routing decisions in public transportation models. Networks 65(3):228–243

    Article  Google Scholar 

  • Schmidt M, Schöbel A (2015b) Timetabling with passenger routing. OR Spectrum 37:75–97

    Article  Google Scholar 

  • Schöbel A (2001) A model for the delay management problem based on mixed-integer-programming. Electron Notes Theoretical Comp Sci 50(1):1–10

    Article  Google Scholar 

  • Schöbel A (2006) Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. Optimization and its applications. Springer, Berlin

    Google Scholar 

  • Schöbel A (2007) Integer programming approaches for solving the delay management problem. In: Algorithmic Methods for Railway Optimization, no. 4359 in Lecture Notes in Computer Science, pp. 145–170. Springer

  • Schöbel A (2017) An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transp Res Part C: Emerg Technol 74:348–365

    Article  Google Scholar 

  • Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J Discrete Mathem 2(4):550–581

    Article  Google Scholar 

  • Siebert M, Goerigk M (2013) An experimental comparison of periodic timetabling models. Comp Oper Res 40(10):2251–2259

    Article  Google Scholar 

  • Sinha A, Malo P, Deb K (2018) A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation 22(2):276–295

    Article  Google Scholar 

  • Suhl L, Biederbick C, Kliewer N (2001) Design of customer-oriented dispatching support for railways. In: Voß S, Daduna J (eds) Computer-aided transit scheduling. Lecture Notes in Economics and Mathematical Systems, vol 505. Springer, pp 365–386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Pätzold.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially funded by the Simulation Science Center Clausthal-Göttingen (SWZ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pätzold, J. Finding robust periodic timetables by integrating delay management. Public Transp 13, 349–374 (2021). https://doi.org/10.1007/s12469-020-00260-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-020-00260-y

Keywords

Navigation