A*-guided heuristic for a multi-objective bus passenger Trip Planning Problem

Abstract

The Bus Passenger Trip Planning Problem is the decision problem the bus passenger faces when he has to move around the city using the bus network: how and when can he reach his destination? Or possibly: given a fixed time to get to the destination, what should be his departure time? We show that both questions are computationally equivalent and can be answered using an A*-guided and Pareto dominance-based heuristic. The A* procedure drives the search estimating the arrival time at the target node, even in intermediate nodes. Dominance is triggered each time a new label is generated, in order to prune out labels defining subpaths with high values for the objectives we focus on: arrival time at destination, number of transfers and total walking distance. We discuss the tradeoff between processing time and solution quality through a parameter called A* speed. The tool is available for transit users on a day-to-day basis in Brazilian cities of up to 800,000 inhabitants and returns a variety of solutions within a couple of seconds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    http://www.ibope.com.br/pt-br/noticias/Documents/RSB%2027%20Mobilidade%20Urbana%20Setembro%202015.pdf.

  2. 2.

    https://www.floripanoponto.com.br/tripplanner.jsp.

  3. 3.

    https://guaruja.onibusfacil.com.br/.

  4. 4.

    http://www.partiusbc.com.br.

References

  1. Attanasi A, De Cristofaro S, Meschini L, Gentile G (2013) Hyperpath journey planner: a dynamic shortest pathfinder for multimodal transportation networks. In: Proceedings of the 26th European Conference on Operational Research (EURO INFORM 2013, Rome, Italy)

  2. Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2015) Route planning in transportation networks. Microsoft Research Technical Report, Redmond, pp 1–65

    Google Scholar 

  3. Berger A, Delling D, Gebhardt A, Müller-Hannemann M (2009) Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected. In: Clausen J, Stefano GD (eds) 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’09), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, vol 12. https://doi.org/10.4230/OASIcs.ATMOS.2009.2148

  4. Brodal GS, Jacob R (2004) Time-dependent networks as models to achieve fast exact time-table queries. Electron Notes Theor Comput Sci 92:3–15

    Article  Google Scholar 

  5. Comi A, Nuzzolo A, Crisalli U, Rosati L (2017) A new generation of individual real-time transit information systems. In: Lam WHK (ed) Modelling intelligent multi-modal transit systems. CRC Press, Boca Raton, pp 80–107

    Google Scholar 

  6. Cooke KL, Halsey E (1966) The shortest route through a network with time-dependent internodal transit times. J Math Anal Appl 14(3):493–498

    Article  Google Scholar 

  7. Delling D, Pajor T, Werneck RF (2012) Round-Based Public Transit Routing. In: Proceedings of the 14th meeting on algorithm engineering and experiments (ALENEX’12) pp 130–140

  8. Dreyfus SE (1969) An appraisal of some shortest path algorithms. Oper Res 17(3):395–412

    Article  Google Scholar 

  9. Gentile G (2017) Time-dependent shortest hyperpaths for dynamic routing on transit networks. In: Nuzzolo A, Lam WHK (eds) Modelling intelligent multi-modal transit systems. CRC Press, Boca Raton, pp 174–230

    Google Scholar 

  10. Idri A, Oukarfi M, Boulmakoul A, Zeitouni K, Masri A (2017) A new time-dependent shortest path algorithm for multimodal transportation network. Proc Comput Sci 109:692–697

    Article  Google Scholar 

  11. Jariyasunant J, Work DB, Kerkez B, Sengupta R, Bayen AM, Glaser S (2010) Mobile transit trip planning with real-time data. In: Transportation research board 89th annual meeting (September). pp 1–17

  12. Mandow L, De La Cruz JLP (2010) Multiobjective A* search with consistent heuristics. J ACM 57(5):1–25

    Article  Google Scholar 

  13. Nannicini G, Delling D, Schultes D, Liberti L (2011) Bidirectional A* search on time-dependent road networks. Networks 59(2):240–251

    Article  Google Scholar 

  14. Pyrga E, Schulz F, Wagner D, Zaroliagis C (2008) Efficient models for timetable information in public transportation systems. J Exp Algorithmics 12(2):2.4

    Google Scholar 

  15. Sanders P, Mandow L (2013) Parallel label-setting multi-objective shortest path search. In: Proceedings—IEEE 27th international parallel and distributed processing symposium. IPDPS, pp 215–224

  16. Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit networks. Transp Res Part B 23(2):83–102

    Article  Google Scholar 

  17. Wang S, Lin W, Yang Y, Xiao X, Zhou S (2015) Efficient route planning on public transportation networks. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data—SIGMOD ’15 pp 967–982

  18. Wu Q, Hartley J (2004) Accommodating user preferences in the optimization of public transport travel. Int J Simul 5(3–4):12–25

    Google Scholar 

  19. Yang Y, Wang S, Hu X, Li J, Xu B (2012) A modified K-shortest paths algorithm for solving the earliest arrival problem on the time-dependent model of transportation systems. In: Proceedings of the international multiconference of engineers and computer scientists II:1562–1567

  20. Zhao L, Ohshima T, Nagamochi H (2008) A* algorithm for the time-dependent shortest path problem. In: The 11th Japan-Korea joint workshop on algorithms and computation (WAAC08) pp 36–43

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylvain M. R. Fournier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fournier, S.M.R., Hülse, E.O. & Pinheiro, É.V. A*-guided heuristic for a multi-objective bus passenger Trip Planning Problem. Public Transp (2019). https://doi.org/10.1007/s12469-019-00204-1

Download citation

Keywords

  • Trip Planning Problem
  • Pareto dominance
  • A* algorithm