Skip to main content

Het voorspellen van de gevoeligheid van kinderleukemiecellen voor proteasoomremmers

Samenvatting

Inleiding

Voor kinderen met een recidief na een eerste succesvolle behandeling van acute lymfatische leukemie (ALL) en acute myeloïde leukemie (AML) bestaat een grote behoefte aan nieuwe geneesmiddelen. Bortezomib (BTZ) is een reversibele proteasoomremmer die momenteel getest wordt in klinische studies bij kinderen met recidief-ALL en -AML. Omdat toxiciteit en resistentie tegen BTZ kunnen optreden, zijn nieuwe proteasoomremmers ontwikkeld. Het doel van dit onderzoek is om te bekijken of kinderleukemiecellen gevoelig zijn voor BTZ en proteasoomremmers van de tweede generatie (carfilzomib, ONX 0912 en ONX 0914), en om factoren te identificeren die voorspellen hoe een kind zal reageren op behandeling met proteasoomremmers.

Methoden

Voor leukemische blastcellen van 29 ALL- en 10 AML-patiënten werden de gevoeligheden voor BTZ, carfilzomib, ONX 0912, ONX 0914 en het glucocorticoïd dexamethason bepaald met de MTT-celviabiliteitstest. Daarnaast werd de eiwitexpressie van de functioneel-actieve proteasoomsubunits bepaald met western blot en ProCISE, en gecorreleerd aan de gevoeligheid voor proteasoomremmers.

Resultaten

ALL-cellen waren significant gevoeliger voor alle proteasoomremmers en dexamethason dan AML-cellen. Expressie van de constitutieve proteasoomsubunits ten opzichte van immuunproteasoomsubunits was significant hoger in AML-cellen dan in ALL-cellen. De ratio van immuun-/constitutieve proteasoomsubunits bleek goed te correleren met de gevoeligheid van ALL-cellen voor ONX 0914 en AML-cellen voor BTZ en carfilzomib.

Conclusie

Expressieniveaus van proteasoomsubunits kunnen van voorspellende waarde zijn hoe een kind zal reageren op proteasoomremmers. Hiermee draagt dit onderzoek bij aan een gerichtere behandeling van kinderen met leukemie.

Summary

Introduction

For children with relapsed acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), there is a need for new therapeutic drugs. Bortezomib (BTZ) is a reversible proteasome inhibitor currently being tested in clinical trials for children with relapsed ALL and AML. BTZ-related toxicity and emergence of resistance has initiated the development of several new irreversible proteasome inhibitors. The aim of this research project is to investigate whether pediatric leukemia cells are sensitive to BTZ and new generation proteasome inhibitors (carfilzomib, ONX 0912 and ONX 0914), and to identify factors that will predict responsiveness of children on treatment with proteasome inhibitors.

Methods

Leukemic blast cells of 29 ALL and 10 AML patients were analyzed for sensitivity to BTZ, carfilzomib, ONX 0912, ONX 0914, and the glucocorticoid dexamethasone by MTT cytotoxicity assays. Additionally, protein expression of the functionally-active proteasome subunits was determined by Western blotting and ProCISE, and correlated to proteasome inhibitor sensitivity.

Results

ALL cells were significantly more sensitive to all proteasome inhibitors and dexamethasone than AML cells. Besides this, expression of constitutive proteasome subunits relative to immune proteasome subunits was significantly higher in AML cells than in ALL cells. The ratio of immune/constitutive proteasome subunit expression correlated with sensitivity of ALL cells for ONX 0914, and of AML for BTZ and carfilzomib sensitivity.

Conclusion

Expression levels of proteasome subunits can be of predictive value how a patient may respond to proteasome inhibitors. As such, this research contributes to a more personalized therapy for children with leukemia in the future.

This is a preview of subscription content, access via your institution.

Figuur 1:
Figuur 2:
Figuur 3:
Figuur 4:

Literatuur

  1. 1

    SEER (Surveillance, Epidemiology and End Results) Cancer Statistics Review, 1975-2009. National Cancer Institute 2012.

  2. 2

    Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012; 120:1165–74.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  3. 3

    Kaspers GJ. Pediatric acute myeloid leukemia. Expert Rev Anticancer Ther. 2012;12:405–13.

    PubMed  Article  CAS  Google Scholar 

  4. 4

    Seifert U, Bialy LP, Ebstein F, et al. Immunoproteasomes preserve protein homeostasis upon interferon- induced oxidative stress. Cell. 2010;142: 613–24.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Kumatori A, Tanaka K, Inamura N, et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA. 1990;87: 7071–5.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  6. 6

    Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res. 2008;14:1649–57.

    PubMed  Article  CAS  Google Scholar 

  7. 7

    Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004;10:3371–6.

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Horton TM, Pati D, Plon SE, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study. Clin Cancer Res. 2007;13: 1516–22.

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120: 285–90.

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Ruschak AM, Slassi M, Kay LE, Schimmer AD. Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst. 2011;103: 1007–17.

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Demo SD, Kirk CJ, Aujay MA, et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007;67:6383–91.

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Jagannath S. New drugs in multiple myeloma and the significance of autologous stem cell transplants. Clin Adv Hematol Oncol. 2009;7:178–9.

    PubMed  Google Scholar 

  13. 13

    Chauhan D, Tian Z, Zhou B, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res. 2011;17:5311–21.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  14. 14

    Muchamuel T, Basler M, Aujay MA, et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med. 2009;15:781–7.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Huber EM, Groll M. Inhibitors for the immunoand constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl. 2012;51:8708–20.

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008; 112:2489–99.

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Franke NE, Niewerth D, Assaraf YG, et al. Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia. 2012;26:757–68.

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Meerloo J van, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011; 731:237–45.

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Chou TC, Talalay P. Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Suzuki E, Demo S, Deu E, et al. Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One. 2011;6:e2799–6.

    Google Scholar 

  21. 21

    Kaspers GJ, Kardos G, Pieters R, et al. Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report. Leukemia. 1994;8:1224–9.

    PubMed  CAS  Google Scholar 

  22. 22

    Ruckrich T, Kraus M, Gogel J, et al. Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia. 2009;23: 1098–105.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Balsas P, Galan-Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSMb5 overexpression and polyploidy. Leuk Res. 2012;36:212–8.

    PubMed  Article  CAS  Google Scholar 

  24. 24

    Kaspers GJ, Veerman AJ, Pieters R, et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997;90:2723–9.

    PubMed  CAS  Google Scholar 

  25. 25

    Kaspers GJ, Pieters R, Klumper E, et al. Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma. 1994;13:187–201.

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Ma MH, Yang HH, Parker K, et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res. 2003;9:1136–44.

    PubMed  CAS  Google Scholar 

  28. 28

    Deroo BJ, Rentsch C, Sampath S, et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol. 2002;22:4113–23.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. 29

    Bentires-Alj M, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 2003;22:90–7.

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Wood P, Burgess R, MacGregor A, Yin JA. P-glycoprotein expression on acute myeloid leukaemia blast cells at diagnosis predicts response to chemotherapy and survival. Br J Haematol. 1994; 87:509–14.

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Verbrugge SE, Assaraf YG, Dijkmans BA, et al. Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATPbinding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)- proteasome inhibitors in mononuclear blood cells from patients with. J Pharmacol Exp Ther. 2012; 341:174–82.

    PubMed  Article  CAS  Google Scholar 

  32. 32

    Chauhan PS, Bhushan B, Singh LC, et al. Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: response to induction chemotherapy. Exp Mol Pathol. 2012;92: 44–9.

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Parlati F, Lee SJ, Aujay M, et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood. 2009;114:3439–47.

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Busse A, Kraus M, Na IK, et al. Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer. 2008;112:659–70.

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Matondo M, Bousquet-Dubouch MP, Gallay N, et al. Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leuk Res. 2010;34:498–506.

    PubMed  Article  CAS  Google Scholar 

  36. 36

    Shuqing L, Jianmin Y, Chongmei H, et al. Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol. 2011;39:1117–8.

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Niewerth D, Dingjan I, Cloos J, et al. Proteasome inhibitors in acute leukemia. Expert Rev Anticancer Ther. 2013;13:327–37.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G.J.L. Kaspers.

Additional information

Auteurs

Mw. Denise Niewerth, dhr. Niels E. Franke en dhr. prof.dr. Gertjan J.L. Kaspers, afdeling Kinderoncologie/ Hematologie; dhr. dr. Gerrit Jansen, afdeling Reumatologie; dhr. Johan van Meerloo en mw. dr. Jacqueline Cloos, afdelingen Kinderoncologie/Hematologie en Hematologie; mw. prof.dr. Sonja Zweegman, afdeling Hematologie, VU medisch centrum, Amsterdam. Mw. dr. Valerie de Haas, Stichting Kinderoncologie Nederland, Den Haag. Correspondentieadres: Prof.dr. G.J.L. Kaspers, afdeling Kinderoncologie/Hematologie, VUmc, De Boelelaan 1117, 1081 HV Amsterdam, gjl.kaspers@ vumc.nl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niewerth, D., Franke, N., Jansen, G. et al. Het voorspellen van de gevoeligheid van kinderleukemiecellen voor proteasoomremmers. TIJDSCHR. KINDERGENEESKUNDE 82, 79–88 (2014). https://doi.org/10.1007/s12456-014-0014-9

Download citation