Skip to main content

Update on CT Imaging of Left Ventricular Assist Devices and Associated Complications


Purpose of Review

The purpose of this paper is to provide an update on the current role of computed tomography (CT) in the imaging of left ventricular assist devices (LVAD).

Recent Findings

Recent studies continue to build on the prognostic role of measuring skeletal muscle CT attenuation in predicting adverse LVAD outcomes, and on the value of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) in the evaluation of suspected LVAD infection. Though CT is very useful for the diagnosis of outflow graft obstruction, it often lacks the diagnostic capability to differentiate between intraluminal thrombus and extrinsic compression from biodebris accumulation. Newer CT techniques such as dual-energy CT and metal artifact reduction algorithms, though promising, lack high-quality published literature on their use in LVAD imaging.


CT is a useful technique as part of a multi-modality approach in the evaluation of LVADs and associated complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  2. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Heart Transplantation Report–2015; Focus Theme: Early Graft Failure. J Heart Lung Transplant. 2015;34(10):1244–54.

    Article  PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64.

    Article  PubMed  Google Scholar 

  4. Gosev I, Kiernan MS, Eckman P, Soleimani B, Kilic A, Uriel N, et al. Long-term survival in patients receiving a continuous-flow left ventricular assist device. Ann Thorac Surg. 2018;105(3):696–701.

    Article  PubMed  Google Scholar 

  5. Mohamed I, Lau CT, Bolen MA, El-Sherief AH, Azok JT, Karimov JH, et al. Building a bridge to save a failing ventricle: radiologic evaluation of short- and long-term cardiac assist devices. Radiographics. 2015;35(2):327–56.

    Article  PubMed  Google Scholar 

  6. Flores AS, Essandoh M, Yerington GC, Bhatt AM, Iyer MH, Perez W, et al. Echocardiographic assessment for ventricular assist device placement. J Thorac Dis. 2015;7(12):2139–50.

    PubMed  PubMed Central  Google Scholar 

  7. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    Article  PubMed  Google Scholar 

  8. Carr CM, Jacob J, Park SJ, Karon BL, Williamson EE, Araoz PA. CT of left ventricular assist devices. Radiographics. 2010;30(2):429–44.

    Article  PubMed  Google Scholar 

  9. Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devices-current state and perspectives. J Thorac Dis. 2016;8(8):E660–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sen A, Larson JS, Kashani KB, Libricz SL, Patel BM, Guru PK, et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care. 2016;20(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sajgalik P, Grupper A, Edwards BS, Kushwaha SS, Stulak JM, Joyce DL, et al. Current status of left ventricular assist device therapy. Mayo Clin Proc. 2016;91(7):927–40.

    Article  PubMed  Google Scholar 

  12. Lim HS, Howell N, Ranasinghe A. The physiology of continuous-flow left ventricular assist devices. J Card Fail. 2017;23(2):169–80.

    Article  PubMed  Google Scholar 

  13. Waller AH, Dunne R, Stewart GC, Ghosh N, Gosev I, Rybicki FJ, et al. Evaluation of bend relief disconnection in patients supported by a HeartMate II left ventricular assist device. Circ Cardiovasc Imaging. 2014;7(5):844–8.

    Article  PubMed  Google Scholar 

  14. Trankle CR, Grizzard JD, Shah KB, Rezai Gharai L, Dana F, Kang MS, et al. Left ventricular assist device outflow graft compression: incidence, clinical associations and potential etiologies. J Card Fail. 2019;25(7):545–52. This paper highlights the importance of biodebris as a cause of outflow graft compression, and compares the incidence between HeartMate and HeartWare devices.

  15. Chrysant GS, Phancao AA, Horstmanshof DA, Jones S, Long JW. Clinical utility of imaging left ventricular assist devices with 320 row multidetector computed tomography. ASAIO J (Am Soc Artif Intern Organs : 1992). 2018;64(6):760–5.

    Article  Google Scholar 

  16. Tabari A, Lo Gullo R, Murugan V, Otrakji A, Digumarthy S, Kalra M. Recent advances in computed tomographic technology: cardiopulmonary imaging applications. J Thorac Imaging. 2017;32(2):89–100.

    Article  PubMed  Google Scholar 

  17. Halliburton SS, Tanabe Y, Partovi S, Rajiah P. The role of advanced reconstruction algorithms in cardiac CT. Cardiovasc Diagn Ther. 2017;7(5):527–38.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Teigen LM, John R, Kuchnia AJ, Nagel EM, Earthman CP, Kealhofer J, et al. Preoperative pectoralis muscle quantity and attenuation by computed tomography are novel and powerful predictors of mortality after left ventricular assist device implantation. Circulation: Heart Failure. 2017;10(9):e004069.

    Google Scholar 

  19. Cogswell R, Trachtenberg B, Murray T, Schultz J, Teigen L, Allen T, et al. A novel model incorporating pectoralis muscle measures to predict mortality after ventricular assist device implantation. J Card Fail. 2020;26(4):308–15. This paper builds on the authors previous work highlighting the prognostic role of pectoralis muscle sarcopenia.

  20. Cogswell R, Estep JD, Araujo-Gutierrez R, Masotti M, Majaraj V, Teigen L, et al. Heart failure severity stratification beyond INTERMACS profiles: a step toward optimal left ventricular assist device timing. ASAIO J (Am Soc Artif Intern Organs : 1992). 2021;67(5):554–60.

  21. Klajda M, Trachtenberg B, Araujo R, Estep JD, Masotti M, Teigen L, et al. Pre-operative sarcopenia is predictive of recurrent gastrointestinal bleeding on left ventricular assist device support: a multicenter analysis. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2022.

  22. Roehrich L, Sündermann SH, Just IA, Kopp Fernandes L, Stein J, Solowjowa N, et al. Comparison of feasibility and results of frailty assessment methods prior to left ventricular assist device implantation. ESC Heart Failure. 2022;9(2):1038–49.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Acharya D, Aryal S, Loyaga-Rendon R, Pamboukian SV, Tallaj J, Kirklin JK, et al. Use of computed tomography in preoperative planning for HeartWare left ventricular assist device placement. ASAIO J (Am Soc Artif Intern Organs : 1992). 2019;65(1):70–6.

  24. Lima B, Dur O, Chuang J, Chamogeorgakis T, Farrar DJ, Sundareswaran KS, et al. Novel cardiac coordinate modeling system for three-dimensional quantification of inflow cannula malposition of HeartMate II LVADs. ASAIO J (Am Soc Artif Intern Organs : 1992). 2018;64(2):154–8.

  25. Sorensen EN, Kon ZN, Feller ED, Pham SM, Griffith BP. Quantitative assessment of inflow malposition in two continuous-flow left ventricular assist devices. Ann Thorac Surg. 2018;105(5):1377–83.

    Article  PubMed  Google Scholar 

  26. Sacks J, Gonzalez-Stawinski GV, Hall S, Lima B, MacHannaford J, Dockery W, et al. Utility of cardiac computed tomography for inflow cannula patency assessment and prediction of clinical outcome in patients with the HeartMate II left ventricular assist device. Interact Cardiovasc Thorac Surg. 2015;21(5):590–3.

    Article  PubMed  Google Scholar 

  27. Spanier T, Oz M, Levin H, Weinberg A, Stamatis K, Stern D, et al. Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 1996;112(4):1090–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tran BC, Nijjar PS. Role of contrast CT for the diagnosis and the prognosis of suspected LVAD thrombosis. J Card Surg. 2017;32(2):162–5.

    Article  PubMed  Google Scholar 

  29. Goldstein DJ, John R, Salerno C, Silvestry S, Moazami N, Horstmanshof D, et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32(7):667–70.

    Article  PubMed  Google Scholar 

  30. Scandroglio AM, Kaufmann F, Pieri M, Kretzschmar A, Muller M, Pergantis P, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67(23):2758–68.

    Article  PubMed  Google Scholar 

  31. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia Ramp Study. J Am Coll Cardiol. 2012;60(18):1764–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shroff GS, Ocazionez D, Akkanti B, Vargas D, Garza A, Gupta P, et al. CT imaging of complications associated with continuous-flow left ventricular assist devices (LVADs). Semin Ultrasound CT MR. 2017;38(6):616–28.

    Article  PubMed  Google Scholar 

  33. Mellnick VM, Raptis DA, Raptis C, Bhalla S. Imaging of left ventricular device complications. J Thorac Imaging. 2013;28(2):W35-41.

    Article  PubMed  Google Scholar 

  34. Jackson GR, Brand T, Katz JN, Ikonomidis JS. Left ventricular assist device failure due to outflow graft compression by thrombofibrotic exudate. J Thorac Cardiovasc Surg. 2019;157(5):e259–61.

    Article  PubMed  Google Scholar 

  35. Jain SS, Clerkin KJ, Anstey DE, Liu Q, Fried JA, Raikhelkar J, Griffin JM, Marshall D, Colombo P, Yuzefpolskaya M, Topkara V, Naka Y, Takeda K, Sayer G, Uriel N, Leb J. Outflow Graft Narrowing of the HeartMate 3 Left Ventricular Assist Device. Ann Thorac Surg. 2022;S0003-4975(22):00010–8.

  36. Agrawal A, Alexy T, Kamioka N, Shafi T, Stowe J, Morris AA, et al. Outflow graft obstruction after left ventricular assist device implantation: a retrospective, single-centre case series. ESC Heart Fail. 2021;8(3):2349–53. This paper provides insights into the incidence of outflow graft obstruction and its management.

  37. Velangi PS, Kalra R, Markowitz J, Nijjar PS. Utility of CT in the diagnosis of prosthetic valve abnormalities. J Card Surg. 2020;35(11):3025–33.

    Article  PubMed  Google Scholar 

  38. Dell’Aquila AM, Avramovic N, Mastrobuoni S, Motekallemi A, Wisniewski K, Scherer M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for improving diagnosis of infection in patients on CF-LVAD: longing for more ‘insights.’ Eur Heart J Cardiovasc Imaging. 2018;19(5):532–43.

    Article  PubMed  Google Scholar 

  39. Tam MC, Patel VN, Weinberg RL, Hulten EA, Aaronson KD, Pagani FD, Corbett JR, Murthy VL. Diagnostic Accuracy of FDG PET/CT in Suspected LVAD Infections: A Case Series, Systematic Review, and Meta-Analysis. JACC Cardiovasc Imaging. 2020;13(5):1191–1202.

  40. Ten Hove D, Treglia G, Slart R, Damman K, Wouthuyzen-Bakker M, Postma DF, et al. The value of (18)F-FDG PET/CT for the diagnosis of device-related infections in patients with a left ventricular assist device: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48(1):241–53. This meta-analysis provides an update on the utility of FDG-PET for LVAD infections.

  41. Argiriou M, Kolokotron S-M, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6 Suppl 1(Suppl 1):S52-S9.

  42. Ali HR, Kiernan MS, Choudhary G, Levine DJ, Sodha NR, Ehsan A, et al. Right ventricular failure post-implantation of left ventricular assist device: prevalence, pathophysiology, and predictors. ASAIO J (Am Soc Artif Intern Organs : 1992). 2019.

  43. Garcia-Alvarez A, Fernandez-Friera L, Lau JF, Sawit ST, Mirelis JG, Castillo JG, et al. Evaluation of right ventricular function and post-operative findings using cardiac computed tomography in patients with left ventricular assist devices. J Heart Lung Transplant. 2011;30(8):896–903.

    PubMed  Google Scholar 

  44. Slaughter MS, Pagani FD, McGee EC, Birks EJ, Cotts WG, Gregoric I, et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2013;32(7):675–83.

    Article  PubMed  Google Scholar 

  45. Stern DR, Kazam J, Edwards P, Maybaum S, Bello RA, D’Alessandro DA, et al. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg. 2010;25(3):352–6.

    Article  PubMed  Google Scholar 

  46. Kirklin JK, Pagani FD, Goldstein DJ, John R, Rogers JG, Atluri P, et al. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J Thorac Cardiovasc Surg. 2020;159(3):865–96. Guideline on LVAD management.

  47. Ben Gal T, Ben Avraham B, Milicic D, Crespo-Leiro MG, Coats AJS, Rosano G, et al. Guidance on the management of left ventricular assist device (LVAD) supported patients for the non-LVAD specialist healthcare provider: executive summary. Eur J Heart Fail. 2021;23(10):1597–609. ESC guideline on LVAD management.

  48. Potapov EV, Antonides C, Crespo-Leiro MG, Combes A, Farber G, Hannan MM, et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg. 2019;56(2):230–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther. 2017;7(5):439–51.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Danad I, Fayad ZA, Willemink MJ, Min JK. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. JACC Cardiovasc Imaging. 2015;8(6):710–23.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol. 2019;23(3):e68–81.

    Article  PubMed  Google Scholar 

  52. D’Angelo T, Cicero G, Mazziotti S, Ascenti G, Albrecht MH, Martin SS, et al. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol. 2019;92(1098):20180546.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Song I, Yi JG, Park JH, Kim SM, Lee KS, Chung MJ. Virtual non-contrast CT using dual-energy spectral CT: feasibility of coronary artery calcium scoring. Korean J Radiol. 2016;17(3):321–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Raju R, Thompson AG, Lee K, Precious B, Yang TH, Berger A, et al. Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(4):282–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289(2):293–312.

    Article  PubMed  Google Scholar 

  56. Aissa J, Boos J, Sawicki LM, Heinzler N, Krzymyk K, Sedlmair M, et al. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms. Br J Radiol. 2017;90(1079):20160778.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lim P, Barber J, Sykes J. Evaluation of dual energy CT and iterative metal artefact reduction (iMAR) for artefact reduction in radiation therapy. Australas Phys Eng Sci Med. 2019;42(4):1025–32.

    Article  CAS  PubMed  Google Scholar 

  58. Thomas R, Aghayev A, Steigner ML. Artifactual appearance of thrombosis on using metal artifact reduction software reconstruction in computed tomographic angiography. J Comput Assist Tomogr. 2018;42(3):457–8.

    Article  PubMed  Google Scholar 

  59. Subhas N, Polster JM, Obuchowski NA, Primak AN, Dong FF, Herts BR, et al. Imaging of arthroplasties: improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique. AJR Am J Roentgenol. 2016;207(2):378–85.

    Article  PubMed  Google Scholar 

  60. Axente M, Paidi A, Von Eyben R, Zeng C, Bani-Hashemi A, Krauss A, et al. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Med Phys. 2015;42(3):1170–83.

    Article  PubMed  Google Scholar 

  61. Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, et al. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8):R49-r80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Prabhjot S. Nijjar.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article  is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velangi, P.S., Agdamag, A.C., Nijjar, P.S. et al. Update on CT Imaging of Left Ventricular Assist Devices and Associated Complications. Curr Cardiovasc Imaging Rep 15, 43–53 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: