Skip to main content
Log in

A Brief History of Intracoronary Imaging

  • Intravascular Imaging (A. G. Truesdell, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper is to review the history of intracoronary imaging as it pertains to the development of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) devices.

Recent Findings

Coronary angiography continues to maintain its stronghold as the diagnostic modality of choice in the diagnosis of coronary artery disease. Limitations in scope, however, have necessitated the development of adjunctive forms of imaging through IVUS and OCT in order to augment the comprehensive assessment and therapeutic management of angiographic findings.

Summary

IVUS and OCT have significantly enhanced current day percutaneous coronary intervention. Over the last 30 years, advancements in their design and technology have solidified a framework for clinical decision-making in the cardiac catheterization lab and have helped more accurately assess and treat coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1:263.

    Article  CAS  PubMed  Google Scholar 

  2. Ali ZA, Karimi Galougahi K, Maehara A, et al. Intracoronary optical coherence tomography 2018: current status and future directions. JACC Cardiovasc Interv. 2017;10:2473–87.

    Article  PubMed  Google Scholar 

  3. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.

    Article  PubMed  Google Scholar 

  4. Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314:2155–63.

    Article  CAS  PubMed  Google Scholar 

  5. Ali ZA, Maehara A, Genereux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388:2618–28.

    Article  PubMed  Google Scholar 

  6. Zhang J, Gao X, Kan J, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72:3126–37.

    Article  PubMed  Google Scholar 

  7. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation. 1976;53:627–32.

    Article  CAS  PubMed  Google Scholar 

  8. Parviz Y, Shlofmitz E, Fall KN, et al. Utility of intracoronary imaging in the cardiac catheterization laboratory: comprehensive evaluation with intravascular ultrasound and optical coherence tomography. Br Med Bull. 2018;125:79–90.

    Article  PubMed  Google Scholar 

  9. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–16.

    Article  CAS  PubMed  Google Scholar 

  10. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–24.

    Article  CAS  PubMed  Google Scholar 

  11. Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Raber L. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J. 2016;37:524–35a-c.

    Article  PubMed  Google Scholar 

  12. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–85.

    Article  CAS  PubMed  Google Scholar 

  13. Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet. 2017;390:793–809.

    Article  PubMed  Google Scholar 

  14. Cieszynski T. Intracardiac method for the investigation of structure of the heart with the aid of ultrasonics. Arch Immunol Ther Exp. 1960;8:551–7.

    CAS  Google Scholar 

  15. Bom N, Lancee CT, Van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics. 1972;10:72–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sahn DJ, Barratt-Boyes BG, Graham K, et al. Ultrasonic imaging of the coronary arteries in open-chest humans: evaluation of coronary atherosclerotic lesions during cardiac surgery. Circulation. 1982;66:1034–44.

    Article  CAS  PubMed  Google Scholar 

  17. McPherson DD, Hiratzka LF, Lamberth WC, et al. Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. N Engl J Med. 1987;316:304–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sahn DJ, Copeland JG, Temkin LP, Wirt DP, Mammana R, Glenn W. Anatomic-ultrasound correlations for intraoperative open chest imaging of coronary artery atherosclerotic lesions in human beings. J Am Coll Cardiol. 1984;3:1169–77.

    Article  CAS  PubMed  Google Scholar 

  19. Sahn DJ, Copeland JG, Temkin LP, Wirt DP, Mammana R, Glenn W. Anatomic-ultrasound correlations for intraoperative open chest imaging of coronary artery atherosclerotic lesions in human beings. In: ultrasound EIfih-fea, ed. J Am Coll Cardiol. Amsterdam: Elsevier; 1984.

    Google Scholar 

  20. Yock PG, Linker DT, Angelsen BA. Two-dimensional intravascular ultrasound: technical development and initial clinical experience. J Am Soc Echocardiogr. 1989;2:296–304.

    Article  CAS  PubMed  Google Scholar 

  21. Yock P, Linker D, Arenson J, et al. Catheter-based sensing and imaging technology-intravascular two-dimensional catheter ultrasound. Los Angeles: SPIE-The International Society for Optical Instrumentation Engineers; 1989.

    Google Scholar 

  22. Yock PG, Inventor Cardiovascular Imaging Systems, Inc., assignee. Catheter apparatus. System and method for intravascular two-dimensional ultrasound. United States of America; 1989.

  23. Di Mario C, The SH, Madretsma S, et al. Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J Am Soc Echocardiogr. 1992;5:135–46.

    Article  PubMed  Google Scholar 

  24. Tobis JM, Mallery JA, Gessert J, et al. Intravascular ultrasound cross-sectional arterial imaging before and after balloon angioplasty in vitro. Circulation. 1989;80:873–82.

    Article  CAS  PubMed  Google Scholar 

  25. Mallery JA, Tobis JM, Griffith J, et al. Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am Heart J. 1990;119:1392–400.

    Article  CAS  PubMed  Google Scholar 

  26. Hodgson JM, Graham SP, Sheehan H, Savakus AD. Percutaneous intracoronary ultrasound imaging: initial applications in patients. Echocardiography. 1990;7:403–13.

    Article  CAS  PubMed  Google Scholar 

  27. Hodgson JM, Graham SP, Savakus AD, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 1989;4:187–93.

    Article  CAS  PubMed  Google Scholar 

  28. Coy KM, Maurer G, Siegel RJ. Intravascular ultrasound imaging: a current perspective. J Am Coll Cardiol. 1991;18:1811–23.

    Article  CAS  PubMed  Google Scholar 

  29. Yock PG, Fitzgerald PJ, Linker DT, Angelsen BA. Intravascular ultrasound guidance for catheter-based coronary interventions. J Am Coll Cardiol. 1991;17:39b–45b.

    Article  CAS  PubMed  Google Scholar 

  30. Siegel RJ, Bessen M, Chae J, et al. Intravascular ultrasound cross-sectional arterial imaging. Echocardiography. 1990;7:181–92.

    Article  CAS  PubMed  Google Scholar 

  31. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  32. Kimura BJ, Bhargava V, Palinski W, Russo RJ, DeMaria AN. Distortion of intravascular ultrasound images because of nonuniform angular velocity of mechanical-type transducers. Am Heart J. 1996;132:328–36.

    Article  CAS  PubMed  Google Scholar 

  33. Levitin A. Intravascular ultrasound. Tech Vasc Interv Radiol. 2001;4:66–74.

    Article  CAS  PubMed  Google Scholar 

  34. Yock PG, Fitzgerald PJ. Intravascular ultrasound: state of the art and future directions. Am J Cardiol. 1998;81:27e–32e.

    Article  CAS  PubMed  Google Scholar 

  35. Layland J, Macisaac AM, Burns AT, Whitbourn RJ, Wilson AM. Integrated coronary physiology in percutaneous intervention: a new paradigm in interventional cardiology. Heart Lung Circ. 2011;20:641–6.

    Article  CAS  PubMed  Google Scholar 

  36. Batty JA, Subba S, Luke P, Gigi LW, Sinclair H, Kunadian V. Intracoronary imaging in the detection of vulnerable plaques. Curr Cardiol Rep. 2016;18:28.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  38. Tanno N, Ichimura T. Reproduction of optical reflection-intensity-distribution using multimode laser coherence. Electron Commun Jpn (Part II: Electron). 1994;77:10–9.

    Article  Google Scholar 

  39. Brezinski ME. Optical coherence tomography for identifying unstable coronary plaque. Int J Cardiol. 2006;107:154–65.

    Article  PubMed  Google Scholar 

  40. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akman A, Bayer A, Nouri-Mahdavi K. Optical coherence tomography in glaucoma: a practical guide. Cham: Springer International Publishing; 2018.

    Book  Google Scholar 

  42. Tearney GJ, Boppart SA, Bouma BE, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett. 1996;21:543–5.

    Article  CAS  PubMed  Google Scholar 

  43. Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93:1206–13.

    Article  CAS  PubMed  Google Scholar 

  44. Srinivasan V, Fujimoto J, Ko T, Wojtkowski M, Huber R, Inventors; Massachusetts Institute of Technology, assignee. Methods and apparatus for optical coherence tomography scanning 2005.

  45. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Terashima M, Kaneda H, Suzuki T. The role of optical coherence tomography in coronary intervention. Korean J Intern Med. 2012;27:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhatt D. Cardiovascular intervention: a companion to Braunwald’s Heart Disease. 1st ed. Philadelphia: Elsvier; 2015.

    Google Scholar 

  48. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  49. Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv. 2011;4:1257–70.

    Article  PubMed  Google Scholar 

  50. Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1:752–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shivakumar P, Sabla GE, Whitington P, Chougnet CA, Bezerra JA. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J Clin Invest. 2009;119:2281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Negi SI, Didier R, Ota H, et al. Role of near-infrared spectroscopy in intravascular coronary imaging. Cardiovasc Revasc Med. 2015;16:299–305.

    Article  PubMed  Google Scholar 

  53. Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol. 2006;47:C92–6.

    Article  PubMed  Google Scholar 

  54. Cassis LA, Lodder RA. Near-IR imaging of atheromas in living arterial tissue. Anal Chem. 1993;65:1247–56.

    Article  CAS  PubMed  Google Scholar 

  55. Kang SJ, Mintz GS, Pu J, et al. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries. JACC Cardiovasc Imaging. 2015;8:184–94.

    Article  PubMed  Google Scholar 

  56. Fard AM, Vacas-Jacques P, Hamidi E, et al. Optical coherence tomography--near infrared spectroscopy system and catheter for intravascular imaging. Opt Express. 2013;21:30849–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhir Shroff.

Ethics declarations

Conflict of Interest

The authors do not have any relevant disclosures or relationships to disclose with respect to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Intravascular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twing, A.H., Meyer, J., Dickens, H. et al. A Brief History of Intracoronary Imaging. Curr Cardiovasc Imaging Rep 13, 18 (2020). https://doi.org/10.1007/s12410-020-09538-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-020-09538-y

Keywords

Navigation