Advertisement

Mechanisms of Stent Failure: Lessons from IVUS and OCT

  • Poonam Velagapudi
  • Majid Asawaeer
  • Andrew M. Goldsweig
  • Fawaz Alenezi
  • Yiannis Chatzizisis
  • Herbert D. Aronow
  • J. Dawn AbbottEmail author
Intravascular Imaging (A Truesdell, Section Editor)
  • 69 Downloads
Part of the following topical collections:
  1. Topical Collection on Intravascular Imaging

Abstract

Purpose of Review

Despite significant advances in stent design and procedural technique, stent failure remains the “Achilles’ heel” of percutaneous coronary intervention (PCI). It is important to understand the mechanism of stent failure to prevent major adverse events and improve clinical outcomes.

Recent Findings

Two-dimensional angiography alone is insufficient for elucidating the etiology of stent failure. Intracoronary imaging modalities, including intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have evolved to guide optimal stent placement during PCI, and have enabled identification of the etiology behind stent failure.

Summary

In this review, we discuss the mechanisms of stent failure, use and limitations of intracoronary imaging (IVUS and OCT) to assess its etiology, and future directions for its use in patients undergoing coronary stent implantation.

Keywords

Stent failure Percutaneous coronary intervention Intravascular ultrasound Optical coherence tomography In-stent restenosis Stent thrombosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Torrado J, Buckley L, Durán A, et al. Restenosis, stent thrombosis, and bleeding complications. J Am Coll Cardiol. 2018;71:1676. This study provides a thorough description regarding restenosis, stent thrombosis and bleeding complications post-PCI.CrossRefGoogle Scholar
  2. 2.
    Goto K, Zhao Z, Matsumura M, Dohi T, Kobayashi N, Kirtane AJ, et al. Mechanisms and patterns of intravascular ultrasound in-stent restenosis among bare metal stents and first- and second-generation drug-eluting stents. Am J Cardiol. 2015;116:1351–7.CrossRefGoogle Scholar
  3. 3.
    Kang S-J, Mintz Gary S, Akasaka T, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug–eluting stent implantation. Circulation. 2011;123:2954–63.CrossRefGoogle Scholar
  4. 4.
    Prati F, Kodama T, Romagnoli E, Gatto L, di Vito L, Ramazzotti V, et al. Suboptimal stent deployment is associated with subacute stent thrombosis: optical coherence tomography insights from a multicenter matched study. From the CLI Foundation investigators: the CLI-THRO study. Am Heart J. 2015;169:249–56.CrossRefGoogle Scholar
  5. 5.
    the PI, the PI, the PI, et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J. 2016;37:1208–16.CrossRefGoogle Scholar
  6. 6.
    •• Group ESCSD, Koskinas KC, Räber L, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39:3281–300. This expert consensus document is a must read for guidance on optimization of coronary interventions. CrossRefGoogle Scholar
  7. 7.
    Stone Gregg W, Ellis Stephen G, Cox David A, et al. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent. Circulation. 2004;109:1942–7.CrossRefGoogle Scholar
  8. 8.
    Kirtane AJ, Gupta A, Iyengar S, Moses JW, Leon MB, Applegate R, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119:3198–206.CrossRefGoogle Scholar
  9. 9.
    Finn Aloke V, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents. Arterioscler Thromb Vasc Biol. 2007;27:1500–10.CrossRefGoogle Scholar
  10. 10.
    Ellis SG, Colombo A, Grube E, Popma J, Koglin J, Dawkins KD, et al. Incidence, timing, and correlates of stent thrombosis with the polymeric paclitaxel drug-eluting stent. J Am Coll Cardiol. 2007;49:1043–51.CrossRefGoogle Scholar
  11. 11.
    Stone GW, Rizvi A, Newman W, Mastali K, Wang JC, Caputo R, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med. 2010;362:1663–74.CrossRefGoogle Scholar
  12. 12.
    Kang S-H, Chae I-H, Park J-J, et al. Stent thrombosis with drug-eluting stents and bioresorbable scaffolds. J Am Coll Cardiol Intv. 2016;9:1203.CrossRefGoogle Scholar
  13. 13.
    Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014;63:2659–73.CrossRefGoogle Scholar
  14. 14.
    Foley DP, Melkert R, Serruys PW. Influence of coronary vessel size on renarrowing process and late angiographic outcome after successful balloon angioplasty. Circulation. 1994;90:1239–51.CrossRefGoogle Scholar
  15. 15.
    Violaris AG, Melkert R, Serruys PW. Long-term luminal renarrowing after successful elective coronary angioplasty of total occlusions. A quantitative angiographic analysis. Circulation. 1995;91:2140–50.CrossRefGoogle Scholar
  16. 16.
    de Feyter PJ, Kay P, Disco C, Serruys PW. Reference chart derived from post-stent-implantation intravascular ultrasound predictors of 6-month expected restenosis on quantitative coronary angiography. Circulation. 1999;100:1777–83.CrossRefGoogle Scholar
  17. 17.
    Serruys PW, Kay IP, Disco C, Deshpande NV, de Feyter PJ. Periprocedural quantitative coronary angiography after Palmaz-Schatz stent implantation predicts the restenosis rate at six months: results of a meta-analysis of the BElgian NEtherlands Stent study (BENESTENT) I, BENESTENT II Pilot, BENESTENT II and MUSIC trials. Multicenter Ultrasound Stent In Coronaries. J Am Coll Cardiol. 1999;34:1067–74.CrossRefGoogle Scholar
  18. 18.
    Raber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39:3281–300.CrossRefGoogle Scholar
  19. 19.
    Waksman R, Kitabata H, Prati F, Albertucci M, Mintz GS. Intravascular ultrasound versus optical coherence tomography guidance. J Am Coll Cardiol. 2013;62:S32–40.CrossRefGoogle Scholar
  20. 20.
    Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. IVUS-guided versus OCT-guided coronary stent implantation: a critical appraisal. J Am Coll Cardiol Img. 2017;10:1487–503.CrossRefGoogle Scholar
  21. 21.
    Lee S-Y, Hong M-K. Stent evaluation with optical coherence tomography. Yonsei Med J. 2013;54:1075–83.CrossRefGoogle Scholar
  22. 22.
    Alfonso F, Suárez A, Angiolillo DJ, Sabaté M, Escaned J, Moreno R, et al. Findings of intravascular ultrasound during acute stent thrombosis. Heart. 2004;90:1455–9.CrossRefGoogle Scholar
  23. 23.
    Choi SY, Witzenbichler B, Maehara A, Lansky AJ, Guagliumi G, Brodie B, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv. 2011;4:239–47.CrossRefGoogle Scholar
  24. 24.
    Lee CW, Kang S-J, Park D-W, Lee SH, Kim YH, Kim JJ, et al. Intravascular ultrasound findings in patients with very late stent thrombosis after either drug-eluting or bare-metal stent implantation. J Am Coll Cardiol. 2010;55:1936–42.CrossRefGoogle Scholar
  25. 25.
    Taniwaki M, Radu Maria D, Zaugg S, et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation. 2016;133:650–60.CrossRefGoogle Scholar
  26. 26.
    Souteyrand G, Amabile N, Mangin L, Chabin X, Meneveau N, Cayla G, et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J. 2016;37:1208–16.CrossRefGoogle Scholar
  27. 27.
    Adriaenssens T, Joner M, Godschalk TC, Malik N, Alfonso F, Xhepa E, et al. Optical coherence tomography findings in patients with coronary stent thrombosis: a report of the PRESTIGE Consortium (Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort). Circulation. 2017;136:1007–21.CrossRefGoogle Scholar
  28. 28.
    Sotomi Y, Suwannasom P, Serruys PW, Onuma Y. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention. 2017;12:1747–56.CrossRefGoogle Scholar
  29. 29.
    Yamaji K, Ueki Y, Souteyrand G, Daemen J, Wiebe J, Nef H, et al. Mechanisms of very late bioresorbable scaffold thrombosis: the INVEST registry. J Am Coll Cardiol. 2017;70:2330–44.CrossRefGoogle Scholar
  30. 30.
    Onuma Y, Serruys PW, Muramatsu T, et al. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb everolimus-eluting fully bioresorbable vascular scaffold. J Am Coll Cardiol Intv. 2014;7:1400.CrossRefGoogle Scholar
  31. 31.
    Mintz GS. Why are we so concerned with acute incomplete stent apposition? Eur Heart J – Cardiovasc Imaging. 2014;16:110–1.CrossRefGoogle Scholar
  32. 32.
    Stone GW, Granada JF. Very late thrombosis after bioresorbable scaffolds. J Am Coll Cardiol. 2015;66:1915–7.CrossRefGoogle Scholar
  33. 33.
    Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold. J Am Coll Cardiol Intv. 2016;9:12.CrossRefGoogle Scholar
  34. 34.
    Otsuka F, Pacheco E, Perkins LE, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330–42.CrossRefGoogle Scholar
  35. 35.
    Räber L, Brugaletta S, Yamaji K, O’Sullivan CJ, Otsuki S, Koppara T, et al. Very late scaffold thrombosis. J Am Coll Cardiol. 2015;66:1901–14.CrossRefGoogle Scholar
  36. 36.
    Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, et al. Intracoronary optical coherence tomography 2018: current status and future directions. J Am Coll Cardiol Intv. 2017;10:2473–87.CrossRefGoogle Scholar
  37. 37.
    Gomez-Lara J, Brugaletta S, Diletti R, et al. Agreement and reproducibility of gray-scale intravascular ultrasound and optical coherence tomography for the analysis of the bioresorbable vascular scaffold. Catheter Cardiovasc Interv. 2012;79:890–902.CrossRefGoogle Scholar
  38. 38.
    Doi H, Maehara A, Mintz GS, Yu A, Wang H, Mandinov L, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. JACC Cardiovasc Interv. 2009;2:1269–75.CrossRefGoogle Scholar
  39. 39.
    Soeda T, Uemura S, Park SJ, Jang Y, Lee S, Cho JM, et al. Incidence and clinical significance of poststent optical coherence tomography findings: one-year follow-up study from a multicenter registry. Circulation. 2015;132:1020–9.CrossRefGoogle Scholar
  40. 40.
    Katagiri Y, De Maria GL, Kogame N, et al. Impact of post-procedural minimal stent area on 2-year clinical outcomes in the SYNTAX II trial. Catheter Cardiovasc Interv. 2019;93:E225–e234.CrossRefGoogle Scholar
  41. 41.
    Song HG, Kang SJ, Ahn JM, Kim WJ, Lee JY, Park DW, et al. Intravascular ultrasound assessment of optimal stent area to prevent in-stent restenosis after zotarolimus-, everolimus-, and sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2014;83:873–8.CrossRefGoogle Scholar
  42. 42.
    Zhang J, Gao X, Kan J, Ge Z, Han L, Lu S, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72:3126–37.CrossRefGoogle Scholar
  43. 43.
    Jones DA, Rathod KS, Koganti S, Hamshere S, Astroulakis Z, Lim P, et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention: outcomes from the Pan-London PCI Cohort. JACC Cardiovasc Interv. 2018;11:1313–21.CrossRefGoogle Scholar
  44. 44.
    Xhepa E, Byrne RA, Rivero F, et al. Qualitative and quantitative neointimal characterization by optical coherence tomography in patients presenting with in-stent restenosis. Clin Res Cardiol. 2019.Google Scholar
  45. 45.
    Nakamura D, Yasumura K, Nakamura H, Matsuhiro Y, Yasumoto K, Tanaka A, et al. Different neoatherosclerosis patterns in drug-eluting- and bare-metal stent restenosis- optical coherence tomography study. Circ J. 2019;83:313–9.CrossRefGoogle Scholar
  46. 46.
    • Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38:3139–47. This randomized trial showed non-inferiority of OCT to IVUS for target vessel failure 12 months post PCI.CrossRefGoogle Scholar
  47. 47.
    Ali ZA, Maehara A, Genereux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet (London, England). 2016;388:2618–28.CrossRefGoogle Scholar
  48. 48.
    Lee SY, Kim JS, Yoon HJ, Hur SH, Lee SG, Kim JW, et al. Early strut coverage in patients receiving drug-eluting stents and its implications for dual antiplatelet therapy: a randomized trial. J Am Coll Cardiol Img. 2018;11:1810–9.CrossRefGoogle Scholar
  49. 49.
    Hassan AK, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2010;31:1172–80.CrossRefGoogle Scholar
  50. 50.
    Gutierrez-Chico JL, Wykrzykowska J, Nuesch E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv. 2012;5:20–9 s1-8.CrossRefGoogle Scholar
  51. 51.
    Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20.CrossRefGoogle Scholar
  52. 52.
    Hanratty CG, Walsh SJ. Longitudinal compression: a “new” complication with modern coronary stent platforms--time to think beyond deliverability? EuroIntervention. 2011;7:872–7.CrossRefGoogle Scholar
  53. 53.
    Kereiakes DJ, Popma JJ, Cannon LA, Kandzari DE, Kimmelstiel CD, Meredith IT, et al. Longitudinal stent deformation: quantitative coronary angiographic analysis from the PERSEUS and PLATINUM randomised controlled clinical trials. EuroIntervention. 2012;8:187–95.CrossRefGoogle Scholar
  54. 54.
    Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol. 2008;101:1704–11.CrossRefGoogle Scholar
  55. 55.
    Qiu F, Mintz GS, Witzenbichler B, Metzger DC, Rinaldi MJ, Duffy PL, et al. Prevalence and clinical impact of tissue protrusion after stent implantation: an ADAPT-DES intravascular ultrasound substudy. JACC Cardiovasc Interv. 2016;9:1499–507.CrossRefGoogle Scholar
  56. 56.
    Hong YJ, Jeong MH, Choi YH, Song JA, Kim DH, Lee KH, et al. Impact of tissue prolapse after stent implantation on short- and long-term clinical outcomes in patients with acute myocardial infarction: an intravascular ultrasound analysis. Int J Cardiol. 2013;166:646–51.CrossRefGoogle Scholar
  57. 57.
    Cheneau E, Leborgne L, Mintz GS, Kotani JI, Pichard AD, Satler LF, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.CrossRefGoogle Scholar
  58. 58.
    Nakano M, Otsuka F, Yahagi K, Sakakura K, Kutys R, Ladich ER, et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur Heart J. 2013;34:3304–13.CrossRefGoogle Scholar
  59. 59.
    Biondi-Zoccai GG, Agostoni P, Sangiorgi GM, Airoldi F, Cosgrave J, Chieffo A, et al. Incidence, predictors, and outcomes of coronary dissections left untreated after drug-eluting stent implantation. Eur Heart J. 2006;27:540–6.CrossRefGoogle Scholar
  60. 60.
    Kobayashi N, Mintz GS, Witzenbichler B, et al. Prevalence, features, and prognostic importance of edge dissection after drug-eluting stent implantation: an ADAPT-DES intravascular ultrasound substudy. Circ Cardiovasc Interv. 2016;9:e003553.CrossRefGoogle Scholar
  61. 61.
    Liu X, Tsujita K, Maehara A, Mintz GS, Weisz G, Dangas GD, et al. Intravascular ultrasound assessment of the incidence and predictors of edge dissections after drug-eluting stent implantation. JACC Cardiovasc Interv. 2009;2:997–1004.CrossRefGoogle Scholar
  62. 62.
    Choi S-Y, Witzenbichler B, Maehara A, Lansky AJ, Guagliumi G, Brodie B, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction. Circ Cardiovasc Interv. 2011;4:239–47.CrossRefGoogle Scholar
  63. 63.
    Maehara A, Mintz GS, Bui AB, Castagna MT, Walter OR, Pappas C, et al. Incidence, morphology, angiographic findings, and outcomes of intramural hematomas after percutaneous coronary interventions: an intravascular ultrasound study. Circulation. 2002;105:2037–42.CrossRefGoogle Scholar
  64. 64.
    Johnson TW, Smith D, Strange JW, Bucciarelli-Ducci C, Lowe R, Baumbach A. Spontaneous multivessel coronary intramural hematoma. JACC Cardiovasc Imaging. 2012;5:1070.CrossRefGoogle Scholar
  65. 65.
    Watanabe Y, Sakakura K, Taniguchi Y, Yamamoto K, Wada H, Fujita H, et al. Determinants of slow flow following stent implantation in intravascular ultrasound-guided primary percutaneous coronary intervention. Heart Vessel. 2018;33:226–38.CrossRefGoogle Scholar
  66. 66.
    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44–122.CrossRefGoogle Scholar
  67. 67.
    Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Poonam Velagapudi
    • 1
  • Majid Asawaeer
    • 1
  • Andrew M. Goldsweig
    • 1
  • Fawaz Alenezi
    • 2
  • Yiannis Chatzizisis
    • 1
  • Herbert D. Aronow
    • 3
  • J. Dawn Abbott
    • 3
    Email author
  1. 1.University of Nebraska Medical CenterOmahaUSA
  2. 2.Duke University Medical CenterDurhamUSA
  3. 3.Division of Cardiovascular Medicine, Department of Internal MedicineBrown UniversityProvidenceUSA

Personalised recommendations