Role of Cardiac Magnetic Resonance in Heart Failure with Preserved Ejection Fraction

  • Faraz PathanEmail author
  • Valentina O. Puntmann
  • Eike Nagel
Cardiac Magnetic Resonance (V Puntmann and E Nagel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardiac Magnetic Resonance


Purpose of Review

Approximately half of the patients presenting with heart failure have preserved ejection fraction. These patients usually have a combination of underlying etiologies and may profit from individualized treatment. Failure of clinical trials without adequate understanding of the underlying problem highlights the need for an in-depth assessment of this complex clinical syndrome. This review seeks to discuss the role of cardiovascular magnetic resonance imaging (CMR) in improving diagnosis and targeted management of heart failure with preserved ejection fraction (HFpEF).

Recent Findings

Technical advances in tissue mapping techniques enable a virtual histopathological perspective to detect myocardial disease processes, such as inflammation, infiltration, and fibrosis. Myocardial perfusion imaging enables separation between regional ischemia due to epicardial coronary artery disease (CAD) and microvascular disease. Finally, computation of aortic pulse wave velocity (PWV) provides insight into the effects of the vascular stiffness on the efficiency of cardiac work.


A comprehensive CMR protocol enables identification of the underlying pathophysiology in patients with HFpEF, allows identification of important differential diagnoses in patients with specific diseases, and may lead to imaging-guided precision medicine in HFpEF.


HFpEF Diastolic dysfunction Cardiovascular magnetic resonance T1/T2 mapping Aortic pulse wave velocity 



Coronary artery disease


Coronary flow reserve


Cardiovascular magnetic resonance imaging


Extracellular volume


Hypertrophic cardiomyopathy


Heart failure with preserved ejection fraction


Heart failure with reduced ejection fraction


Late gadolinium enhancement


Pulse wave velocity


Right ventricular dysfunction


Compliance with Ethical Standards

Conflict of Interest

Faraz Pathan and Valentina O. Puntmann declare that they have no conflicts of interest.

Eike Nagel reports non-financial support from Bayer Healthcare, non-financial support from Siemens Healthcare, non-financial support from TOMTEC, non-financial support from CVI42, non-financial support from MEDIS, grants from Deutsches Zentrum für Herz- Kreislauf-Forschung e.V. (DZHK), and grants from German Research Foundation (DFG), during the conduct of the study. He also reports grants and personal fees from Bayer Healthcare and personal fees from Siemens Healthcare, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602. Latest review on epidemiology of HFpEF highlights magnitude of problem and differences between population characteristics and sample characteristics in clinical trials. CrossRefPubMedGoogle Scholar
  2. 2.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355(3):260–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Gerber Y, Weston SA, Redfield MM, Chamberlain AM, Manemann SM, Jiang R, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med. 2015;175(6):996–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham Heart Study of the National Heart, Lung, and Blood Institute. Circulation. 2009;119(24):3070–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Perez de Isla L, Canadas V, Contreras L, Almeria C, Rodrigo JL, Aubele AL, et al. Diastolic heart failure in the elderly: in-hospital and long-term outcome after the first episode. Int J Cardiol. 2009;134(2):265–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Tribouilloy C, Rusinaru D, Mahjoub H, Souliere V, Levy F, Peltier M, et al. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur Heart J. 2008;29(3):339–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92.CrossRefPubMedGoogle Scholar
  11. 11.
    • Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9. State of the art review on HFpEF and current treatment options. CrossRefPubMedGoogle Scholar
  12. 12.
    Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    •• Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. Key pathophysiological reviews providing insights into sub stratifying HFpEF. CrossRefPubMedGoogle Scholar
  14. 14.
    •• Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014;11(9):507–15. Key pathophysiological reviews providing insights into sub stratifying HFpEF. CrossRefPubMedGoogle Scholar
  15. 15.
    Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Paulus WJ, van Ballegoij JJ. Treatment of heart failure with normal ejection fraction: an inconvenient truth! J Am Coll Cardiol. 2010;55(6):526–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115(15):1982–90.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mahmod M, Pal N, Holloway C, Ferreira VM, Dass S, Francis JM, et al. Cardiac steatosis and left ventricular remodeling in heart failure with reduced and preserved ejection fraction. J Cardiovasc Magn Reson. 2015;17(Suppl 1):P309.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rosas PC, Liu Y, Abdalla MI, Thomas CM, Kidwell DT, Dusio GF, et al. Phosphorylation of cardiac myosin-binding protein-C is a critical mediator of diastolic function. Circ Heart Fail. 2015;8(3):582–94.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247–59.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Puntmann VO, Nagel E, Hughes AD, Gebker R, Gaddum N, Chowienczyk P, et al. Gender-specific differences in myocardial deformation and aortic stiffness at rest and dobutamine stress. Hypertension. 2012;59(3):712–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Shah SJ. Innovative clinical trial designs for precision medicine in heart failure with preserved ejection fraction. J Cardiovasc Transl Res. 2017;10(3):322–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.CrossRefPubMedGoogle Scholar
  24. 24.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.CrossRefPubMedGoogle Scholar
  25. 25.
    Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol. 2012;110(6):870–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, et al. Multiecho Dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med. 2009;61(1):215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hsu JJ, Ziaeian B, Fonarow GC. Heart failure with mid-range (borderline) ejection fraction: clinical implications and future directions. JACC Heart Fail. 2017;5(11):763–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging. 2010;3(1):10–8.CrossRefPubMedGoogle Scholar
  31. 31.
    • Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130(25):2310–20. Highlights the role of the right ventricle in HFpEF clinical syndrome. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18(12):1472–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Aschauer S, Kammerlander AA, Zotter-Tufaro C, Ristl R, Pfaffenberger S, Bachmann A, et al. The right heart in heart failure with preserved ejection fraction: insights from cardiac magnetic resonance imaging and invasive haemodynamics. Eur J Heart Fail. 2016;18(1):71–80.CrossRefPubMedGoogle Scholar
  34. 34.
    •• Paelinck BP, de Roos A, Bax JJ, Bosmans JM, van Der Geest RJ, Dhondt D, et al. Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol. 2005;45(7):1109–16. Key manuscript comparing CMR derived diastolic indices to echocardiography and invasive assessment and a key reference for future CMR studies evaluating diastolic function. CrossRefPubMedGoogle Scholar
  35. 35.
    Westenberg JJ. CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep. 2011;4(2):149–58.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008;10(1):36.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ambale-Venkatesh B, Armstrong AC, Liu C-Y, Donekal S, Yoneyama K, Wu CO, et al. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2014;15(4):442–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Flachskampf FA, Biering-Sørensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA. Cardiac imaging to evaluate left ventricular diastolic function. J Am Coll Cardiol Img. 2015;8(9):1071–93.CrossRefGoogle Scholar
  39. 39.
    Habibi M, Chahal H, Opdahl A, Gjesdal O, Helle-Valle TM, Heckbert SR, et al. Association of CMR-measured LA function with heart failure development: results from the MESA study. J Am Coll Cardiol Img. 2014;7(6):570–9.CrossRefGoogle Scholar
  40. 40.
    Garcia MJ. Constrictive pericarditis versus restrictive cardiomyopathy? J Am Coll Cardiol. 2016;67(17):2061–76.CrossRefPubMedGoogle Scholar
  41. 41.
    Hwang SJ, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63(25 Pt A):2817–27.CrossRefPubMedGoogle Scholar
  42. 42.
    Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2014;2(2):113–22.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    To ACY, Dhillon A, Desai MY. Cardiac magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol Img. 2011;4(10):1123–37.CrossRefGoogle Scholar
  44. 44.
    Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, et al. T1 Mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging. 2015;8(12).Google Scholar
  45. 45.
    Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14(1):13.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111(2):186–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Raina S, Lensing SY, Nairooz RS, Pothineni NV, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016;9(11):1267–77.CrossRefPubMedGoogle Scholar
  48. 48.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado D, White SK, et al. Native T1 mapping in ATTR cardiac amyloidosis—comparison with AL cardiac amyloidosis—a 200 patient study. J Cardiovasc Magn Reson. 2014;16(Suppl 1):O4.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis. A review of diagnosis and therapy. Journal of the American College of Cardiology 2016;68(12):1323–1341.Google Scholar
  50. 50.
    Bogaert J, Francone M. Pericardial disease: value of CT and MR imaging. Radiology. 2013;267(2):340–56.CrossRefPubMedGoogle Scholar
  51. 51.
    Adler Y, Charron P, Imazio M, Badano L, Baron-Esquivias G, Bogaert J, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64.CrossRefPubMedGoogle Scholar
  52. 52.
    Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.CrossRefPubMedGoogle Scholar
  53. 53.
    Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet (London, England). 2012;379(9814):453–60.CrossRefGoogle Scholar
  54. 54.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28.CrossRefPubMedGoogle Scholar
  55. 55.
    De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.CrossRefPubMedGoogle Scholar
  56. 56.
    Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207–13.CrossRefPubMedGoogle Scholar
  57. 57.
    Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006;27(12):1465–71.CrossRefPubMedGoogle Scholar
  58. 58.
    Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1).Google Scholar
  59. 59.
    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Wei J, Mehta PK, Johnson BD, Samuels B, Kar S, Anderson RD, et al. Safety of coronary reactivity testing in women with no obstructive coronary artery disease: results from the NHLBI-sponsored WISE (Women’s Ischemia Syndrome Evaluation) study. JACC Cardiovasc Interv. 2012;5(6):646–53.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thomson LE, Wei J, Agarwal M, Haft-Baradaran A, Shufelt C, Mehta PK, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015;8(4): e.
  62. 62.
    Hautvast GL, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S. Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn Reson Med. 2011;66(5):1477–87.CrossRefPubMedGoogle Scholar
  63. 63.
    Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, et al. Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(2).Google Scholar
  64. 64.
    Nagel E. MR-INFORM: stress perfusion imaging to guide the management of patients with stable coronary artery disease. Presentation Session. 2017:401–12.Google Scholar
  65. 65.
    Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1):e002477.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shah NR, Cheezum MK, Veeranna V, Horgan SJ, Taqueti VR, Murthy VL, et al. Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: impact on microvascular and diastolic function. J Am Heart Assoc. 2017;6(5).Google Scholar
  67. 67.
    Lurz P, Luecke C, Eitel I, Fohrenbach F, Frank C, Grothoff M, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-trial. J Am Coll Cardiol. 2016;67(15):1800–11.CrossRefPubMedGoogle Scholar
  68. 68.
    Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, Yu CY, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging. 2015;8(1):37–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6(4):475–84.CrossRefPubMedGoogle Scholar
  70. 70.
    Hinojar R, Foote L, Sangle S, Marber M, Mayr M, Carr-White G, et al. Native T1 and T2 mapping by CMR in lupus myocarditis: disease recognition and response to treatment. Int J Cardiol. 2016;222:717–26.CrossRefPubMedGoogle Scholar
  71. 71.
    Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology. 2017;285(1):63–72.CrossRefPubMedGoogle Scholar
  72. 72.
    Puntmann VO, Peker E, Chandrashekhar Y, Nagel E. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res. 2016;119(2):277–99.CrossRefPubMedGoogle Scholar
  73. 73.
    Puntmann VO, Arroyo Ucar E, Hinojar Baydes R, Ngah NB, Kuo YS, Dabir D, et al. Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension. 2014;64(4):762–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging. 2014;7(10):991–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, et al. T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging. 2016;9(1):40–50.CrossRefPubMedGoogle Scholar
  76. 76.
    Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2013;6(6):1056–65.CrossRefPubMedGoogle Scholar
  77. 77.
    Child N, Suna G, Dabir D, Yap ML, Rogers T, Kathirgamanathan M, et al. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. European heart journal cardiovascular Imaging. 2017:jex309-jex.Google Scholar
  78. 78.
    Rogers T, Dabir D, Mahmoud I, Voigt T, Schaeffter T, Nagel E, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease—the ConSept study. J Cardiovasc Magn Reson. 2013;15:78.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Coelho-Filho OR, Shah RV, Neilan TG, Mitchell R, Moreno H Jr, Kwong R, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3(3):e000790.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Alehagen U, Benson L, Edner M, Dahlstrom U, Lund LH. Association between use of statins and mortality in patients with heart failure and ejection fraction of >/=50. Circ Heart Fail. 2015;8(5):862–70.CrossRefPubMedGoogle Scholar
  81. 81.
    Fukuta H, Goto T, Wakami K, Ohte N. The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol. 2016;214:301–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Gallet R, de Couto G, Simsolo E, Valle J, Sun B, Liu W, et al. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci. 2016;1(1–2):14–28.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Maroules CD, Khera A, Ayers C, Goel A, Peshock RM, Abbara S, et al. Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson. 2014;16(1):33.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33(5):1111–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Bonapace S, Rossi A, Cicoira M, Targher G, Valbusa F, Benetos A, et al. Increased aortic pulse wave velocity as measured by echocardiography is strongly associated with poor prognosis in patients with heart failure. J Am Soc Echocardiogr. 2013;26(7):714–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Bell V, McCabe EL, Larson MG, Rong J, Merz AA, Osypiuk E, et al. Relations between aortic stiffness and left ventricular mechanical function in the community. J Am Heart Assoc. 2017;6(1).Google Scholar
  87. 87.
    Karagodin I, Aba-Omer O, Sparapani R, Strande JL. Aortic stiffening precedes onset of heart failure with preserved ejection fraction in patients with asymptomatic diastolic dysfunction. BMC Cardiovasc Disord. 2017;17(1):62.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chow B, Rabkin SW. The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev. 2015;20(3):291–303.CrossRefPubMedGoogle Scholar
  89. 89.
    Weber T, Wassertheurer S, O'Rourke MF, Haiden A, Zweiker R, Rammer M, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61(18):1874–83.CrossRefPubMedGoogle Scholar
  90. 90.
    Puntmann VO, Asrress KN, Marber M, Redwood S, Plein S, Nagel E. Gender differences in pulse wave velocity in young healthy adults at rest and exercise—the WellHeart Study. J Cardiovasc Magn Reson. 2013;15(Suppl 1):E83.CrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ibrahim el SH, Johnson KR, Miller AB, Shaffer JM, White RD. Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques. J Cardiovasc Magn Reson. 2010;12(1):26.CrossRefGoogle Scholar
  92. 92.
    Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(5):535–42.CrossRefPubMedGoogle Scholar
  93. 93.
    Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.CrossRefPubMedGoogle Scholar
  94. 94.
    Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49(2):198–207.CrossRefPubMedGoogle Scholar
  95. 95.
    Chirinos JA, Sweitzer N. Ventricular-arterial coupling in chronic heart failure. Card Fail Rev. 2017;3(1):12–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.CrossRefPubMedGoogle Scholar
  97. 97.
    Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, et al. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2014;64(21):2281–93.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Faraz Pathan
    • 1
    • 2
    Email author
  • Valentina O. Puntmann
    • 2
  • Eike Nagel
    • 2
  1. 1.Menzies Institute for Medical ResearchUniversity of TasmaniaHobartAustralia
  2. 2.Goethe Institute for Experimental and Translational Cardiovascular ImagingGoethe CVI, Goethe University Hospital FrankfurtFrankfurt am MainGermany

Personalised recommendations