Skip to main content

Advertisement

Log in

New Trends in Quantitative Nuclear Cardiology Methods

  • Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of quantitative analysis in single photon emission computed tomography (SPECT) and positron emission tomography (PET) has become an integral part of current clinical practice and plays a crucial role in the detection and risk stratification of coronary artery disease. Emerging technologies, new protocols, and new quantification methods have had a significant impact on the diagnostic performance and prognostic value of nuclear cardiology imaging while reducing the need for clinician oversight. In this review, we aim to describe recent advances in automation and quantitative analysis in nuclear cardiology.

Recent Findings

Recent publications have shown that fully automatic processing is feasible, limiting human input to specific cases where aberrancies are detected by the quality control software. Furthermore, there is evidence indicating that fully quantitative analysis of myocardial perfusion imaging is feasible and can achieve at least similar diagnostic accuracy as visual interpretation by an expert clinician. In addition, the use of fully automated quantification in combination with machine learning algorithms can provide incremental diagnostic and prognostic value over the traditional method of expert visual interpretation.

Summary

Emerging technologies in nuclear cardiology focus on automation and the use of artificial intelligence as part of the interpretation process. This review highlights the benefits and limitations of these applications and outlines future directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

LV:

Left ventricular

MPI:

Myocardial perfusion imaging

PET:

Positron-emission tomography

SPECT:

Single photon emission computed tomography

TPD:

Total perfusion deficit

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2(5):412–24. https://doi.org/10.1161/CIRCIMAGING.109.854893.

    Article  PubMed  Google Scholar 

  2. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85. https://doi.org/10.1016/j.nuclcard.2003.12.004.

    Article  PubMed  Google Scholar 

  3. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.

    PubMed  Google Scholar 

  4. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48(5):1029–39. https://doi.org/10.1016/j.jacc.2006.06.025.

    Article  PubMed  Google Scholar 

  5. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16(1):45–53. https://doi.org/10.1007/s12350-008-9018-0.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Iskandrian AE, Garcia EV, Faber T, Mahmarian JJ. Automated assessment of serial SPECT myocardial perfusion images. J Nucl Cardiol. 2009;16(1):6–9. https://doi.org/10.1007/s12350-008-9020-6.

    Article  PubMed  Google Scholar 

  7. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M Jr, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54(2):221–8. https://doi.org/10.2967/jnumed.112.108969.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(6):1050–7. https://doi.org/10.1007/s12350-010-9297-0.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol. 2012;19(2):338–46. https://doi.org/10.1007/s12350-011-9509-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu Y, Kavanagh P, Fish M, Gerlach J, Ramesh A, Lemley M, et al. Automated quality control for segmentation of myocardial perfusion SPECT. J Nucl Med. 2009;50(9):1418–26. https://doi.org/10.2967/jnumed.108.061333.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • Germano G, Kavanagh PB, Fish MB, Lemley MH, Xu Y, Berman DS, et al. “Same-patient processing” for multiple cardiac SPECT studies. 1. Improving LV segmentation accuracy. J Nucl Cardiol. 2016;23(6):1435–41. https://doi.org/10.1007/s12350-016-0673-2. This study demonstrated that, in patients with multiple MPI studies, contour detection is improved using "same-patient processing" by avoiding inter-study inconsistencies.

  12. • Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2017;58(6):961–7. https://doi.org/10.2967/jnumed.116.179911. This study demonstrated that machine learning algorithms for valve plane localization and segmentation are as effective as expert operators and yielded equivalent diagnostic accuracy.

  13. Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the end-diastolic images and the summed images of gated 99mTc-sestamibi SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol. 1999;6(2):169–76. https://doi.org/10.1016/S1071-3581(99)90077-6.

    Article  CAS  PubMed  Google Scholar 

  14. Motwani M, Berman DS, Germano G, Slomka P. Automated quantitative nuclear cardiology methods. Cardiol Clin. 2016;34(1):47–57. https://doi.org/10.1016/j.ccl.2015.08.003.

    Article  PubMed  Google Scholar 

  15. Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med. 2004;45(7):1128–34.

    PubMed  Google Scholar 

  16. Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for respiratory binned cardiac SPECT. Med Phys. 2016;43(1):443. https://doi.org/10.1118/1.4938579.

    Article  PubMed  Google Scholar 

  17. • Daou D, Sabbah R, Coaguila C, Boulahdour H. Applicability of data-driven respiratory motion correction to CZT SPECT myocardial perfusion imaging in the clinical setting: the birth of an old wish. J Nucl Cardiol. 2017;24(4):1451–3. https://doi.org/10.1007/s12350-016-0633-x. This study demonstrated the feasibility and applicability of respiratory motion correction with CZT SPECT systems.

  18. Daou D, Sabbah R, Coaguila C, Boulahdour H. Feasibility of data-driven cardiac respiratory motion correction of myocardial perfusion CZT SPECT: a pilot study. J Nucl Cardiol. 2016.

  19. • Slomka PJ, Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, et al. Dual-gated motion-frozen cardiac PET with flurpiridaz F 18. J Nucl Med. 2015;56(12):1876–81. https://doi.org/10.2967/jnumed.115.164285. This study demonstrated the feasibility of dual (respiratory and cardiac) motion correction in PET imaging using the novel radiotracer F-18 flurpiridaz.

  20. Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007;14(4):483–91. https://doi.org/10.1016/j.nuclcard.2007.06.005.

    Article  PubMed  Google Scholar 

  21. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14(4):420–32. https://doi.org/10.1016/j.nuclcard.2007.06.009.

    Article  PubMed  Google Scholar 

  22. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14(4):455–65. https://doi.org/10.1016/j.nuclcard.2007.06.006.

    Article  PubMed  Google Scholar 

  23. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007;14(4):433–54. https://doi.org/10.1016/j.nuclcard.2007.06.008.

    Article  PubMed  Google Scholar 

  24. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42. https://doi.org/10.1161/hc0402.102975.

    Article  PubMed  Google Scholar 

  25. Hendel RC, Budoff MJ, Cardella JF, Chambers CE, Dent JM, Fitzgerald DM, et al. ACC/AHA/ACR/ASE/ASNC/HRS/NASCI/RSNA/SAIP/SCAI/SCCT/SCMR/SIR 2008 key data elements and definitions for cardiac imaging a report of the American College of Cardiology/American Heart Association Task Force on clinical data standards (Writing Committee to Develop Clinical Data Standards for Cardiac Imaging). J Am Coll Cardiol. 2009;53(1):91–124. https://doi.org/10.1016/j.jacc.2008.09.006.

    Article  PubMed  Google Scholar 

  26. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12(1):66–77. https://doi.org/10.1016/j.nuclcard.2004.10.006.

    Article  PubMed  Google Scholar 

  27. • Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877–84. https://doi.org/10.1007/s12350-014-0027-x. This study demonstrated that integration of perfusion analysis with clinical variables through machine learning algorithms was comparable or superior to expert interpretation in predicting coronary revascularization.

  28. • Motwani M, Leslie WD, Goertzen AL, Otaki Y, Germano G, Berman DS, et al. Fully automated analysis of attenuation-corrected SPECT for the long-term prediction of acute myocardial infarction. J Nucl Cardiol. 2017; https://doi.org/10.1007/s12350-017-0840-0. This study demonstrated that in automatically processed and interpreted MPI studies, stress TPD was an independent predictor of future myocardial infarction.

  29. Sanghani RM, Doukky R. Fully automated analysis of perfusion data: the rise of the machines. J Nucl Cardiol. 2017; https://doi.org/10.1007/s12350-017-0884-1.

  30. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, et al. Automatic quantification of myocardial perfusion stress-rest change: a new measure of ischemia. J Nucl Med. 2004;45(2):183–91.

    PubMed  Google Scholar 

  31. Slomka P, Hung GU, Germano G, Berman DS. Novel SPECT technologies and approaches in cardiac imaging. Cardiovasc Innov Appl. 2016;2(1):31–46. https://doi.org/10.15212/CVIA.2016.0052.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91. https://doi.org/10.1161/CIRCULATIONAHA.107.743963.

    Article  PubMed  Google Scholar 

  33. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol. 2013;167(3):1023–6. https://doi.org/10.1016/j.ijcard.2012.03.076.

    Article  PubMed  Google Scholar 

  34. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2(6):751–8. https://doi.org/10.1016/j.jcmg.2009.04.004.

    Article  PubMed  Google Scholar 

  35. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8. https://doi.org/10.1016/j.jacc.2011.01.065.

    Article  PubMed  Google Scholar 

  36. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6. https://doi.org/10.1016/j.jacc.2009.02.069.

    Article  PubMed  Google Scholar 

  37. Fukushima K, Javadi MS, Higuchi T, Lautamaki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52(5):726–32. https://doi.org/10.2967/jnumed.110.081828.

    Article  PubMed  Google Scholar 

  38. Klein R, Hung GU, Wu TC, Huang WS, Li D, deKemp RA, et al. Feasibility and operator variability of myocardial blood flow and reserve measurements with (9)(9)mTc-sestamibi quantitative dynamic SPECT/CT imaging. J Nucl Cardiol. 2014;21(6):1075–88. https://doi.org/10.1007/s12350-014-9971-8.

    Article  PubMed  Google Scholar 

  39. • Hsu B, Hu LH, Yang BH, Chen LC, Chen YK, Ting CH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with 13N-ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging. 2017;44(1):117–28. https://doi.org/10.1007/s00259-016-3491-5. This study suggested that the accuracy of myocardial blood flow quantification by PET and SPECT may be comparable.

  40. Slomka PJ, Berman DS, Germano G. Absolute myocardial blood flow quantification with SPECT/CT: is it possible? J Nucl Cardiol. 2014;21(6):1092–5. https://doi.org/10.1007/s12350-014-0002-6.

    Article  PubMed  Google Scholar 

  41. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24. https://doi.org/10.1161/CIRCULATIONAHA.111.050427.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brodov Y, Fish M, Rubeaux M, Otaki Y, Gransar H, Lemley M, et al. Quantitation of left ventricular ejection fraction reserve from early gated regadenoson stress Tc-99m high-efficiency SPECT. J Nucl Cardiol. 2016;23(6):1251–61. https://doi.org/10.1007/s12350-016-0519-y.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Atchley AE, Kitzman DW, Whellan DJ, Iskandrian AE, Ellis SJ, Pagnanelli RA, et al. Myocardial perfusion, function, and dyssynchrony in patients with heart failure: baseline results from the single-photon emission computed tomography imaging ancillary study of the heart failure and a controlled trial investigating outcomes of exercise TraiNing (HF-ACTION) trial. Am Heart J. 2009;158(4 Suppl):S53–63. https://doi.org/10.1016/j.ahj.2009.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12(6):687–95. https://doi.org/10.1016/j.nuclcard.2005.06.088.

    Article  PubMed  Google Scholar 

  45. Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol. 2011;18(4):685–94. https://doi.org/10.1007/s12350-011-9392-x.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun. 2008;29(4):374–81. https://doi.org/10.1097/MNM.0b013e3282f81380.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aggarwal H, AlJaroudi WA, Mehta S, Mannon R, Heo J, Iskandrian AE, et al. The prognostic value of left ventricular mechanical dyssynchrony using gated myocardial perfusion imaging in patients with end-stage renal disease. J Nucl Cardiol. 2014;21(4):739–46. https://doi.org/10.1007/s12350-014-9886-4.

    Article  PubMed  Google Scholar 

  48. Pazhenkottil AP, Buechel RR, Husmann L, Nkoulou RN, Wolfrum M, Ghadri JR, et al. Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart. 2011;97(1):33–7. https://doi.org/10.1136/hrt.2010.201566.

    Article  PubMed  Google Scholar 

  49. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med. 2015;56(9):1345–50. https://doi.org/10.2967/jnumed.114.153429.

    Article  CAS  PubMed  Google Scholar 

  50. Engbers EM, Timmer JR, Mouden M, Jager PL, Knollema S, Oostdijk AH, et al. Visual estimation of coronary calcium on computed tomography for attenuation correction. J Cardiovasc Comput Tomogr. 2016;10(4):327–9. https://doi.org/10.1016/j.jcct.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  51. Mylonas I, Kazmi M, Fuller L, deKemp RA, Yam Y, Chen L, et al. Measuring coronary artery calcification using positron emission tomography-computed tomography attenuation correction images. Eur Heart J Cardiovasc Imaging. 2012;13(9):786–92. https://doi.org/10.1093/ehjci/jes079.

    Article  PubMed  Google Scholar 

  52. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56(23):1914–21. https://doi.org/10.1016/j.jacc.2010.05.057.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Isgum I, de Vos BD, Wolterink JM, Dey D, Berman DS, Rubeaux M, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J Nucl Cardiol. 2017. This study demonstrated that CT attenuation correction scan in PET imaging may be used for calcium score determination.

  54. • Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38(7):500–7. https://doi.org/10.1093/eurheartj/ehw188. This study demonstrated that machine learning algorithms, combining clinical and CCTA parameters, predict all cause death better than CCTA alone.

  55. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imaging (Bellingham). 2015;2(1):014003. https://doi.org/10.1117/1.JMI.2.1.014003.

    Article  Google Scholar 

  56. • Betancur J, Otaki Y, Motwani M, Fish M, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2017; https://doi.org/10.1016/j.jcmg.2017.07.024. This study shows that, compared to visual assessment, automatic interpretation using machine learning was superior in predicting 3-year MACE risk.

  57. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat. 2008;2(3):841–60. https://doi.org/10.1214/08-AOAS169.

    Article  Google Scholar 

  58. Chen Y, Jia Z, Mercola D, Xie X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput Math Methods Med. 2013;2013:873595.

    PubMed  PubMed Central  Google Scholar 

  59. • Betancur J, Commandeur T, Sharir T, Fish M, Ruddy TD, Kaufmann PA, et al. Analysis of raw polar maps from myocardial perfusion SPECT by gender-adjusted deep learning improves automatic prediction of obstructive coronary disease. J Nucl Cardiol. 2017;24(4):1492–3. [Abstract 330–05]. This study demonstrated that deep machine learning algorithms improved the prediction of obstructive coronary artery disease.

Download references

Funding

This work was supported in part by grant R01HL089765 from the National Heart, Lung, and Blood Institute/National Institutes of Health (NHLBI/NIH) (PI: Piotr Slomka). The views expressed in this manuscript are those of the authors and do not necessarily reflect the official views of the National Heart, Lung, and Blood Institute, the National Institutes of Health, or the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Doukky.

Ethics declarations

Conflicts of Interest

Rami Doukky receives research funding grants and serves on an advisory board for Astellas Pharma Astellas Pharma Global Development (Northbrook, IL). Guido Germano and Piotr Slomka receive royalties from Cedars-Sinai for licensing of quantitative algorithms for nuclear cardiology. The other authors have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, J., Doukky, R., Germano, G. et al. New Trends in Quantitative Nuclear Cardiology Methods. Curr Cardiovasc Imaging Rep 11, 1 (2018). https://doi.org/10.1007/s12410-018-9443-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-018-9443-7

Keywords

Navigation