Skip to main content

Advertisement

Log in

New Imaging Methods for Detection of Drug-Induced Cardiotoxicity in Cancer Patients

  • Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In the last decades, there have been great advances made in cancer diagnosis and treatment, giving a reduction in mortality, an increase in survival, and a better quality of life in cancer patients. In addition, the progress made in cancer treatments has resulted in increased exposure to the cardiotoxic effects of chemotherapies. Screening for the occurrence of cardiotoxicity (CTX) is highly recommended before, during, and after the end of chemotherapy.

Recent Findings

A number of methods and diagnostic indexes have been recommended for detecting CTX and planning therapeutic strategies. Measuring left ventricular ejection fraction through a conventional echocardiogram is the most used strategy, although it is a poorly refined parameter, often detectable only in the later stages.

Summary

In this article, we will focus on new imaging methods and more specific parameters for early detection of CTX in cancer patients, including nuclear imaging techniques and molecular radiotracers, strain and speckle tracking echocardiography, three-dimensional echocardiography, and cardiac magnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Society of Clinical Oncology. The State of Cancer Care in America, 2015: a report by the American Society of Clinical Oncology. J Oncol Pract. 2015;11(2):79–113.

    Article  Google Scholar 

  2. Pepe A, Pizzino F, Gargiulo P, Perrone-Filardi P, Cadeddu C, Mele D, et al. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology. J Cardiovasc Med (Hagerstown). 2016;17(Suppl 1):e45–54.

    Article  Google Scholar 

  3. Vasu S, Hundley WG. Understanding cardiovascular injury after treatment for cancer: an overview of current uses and future directions of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II–positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–70.

    Article  CAS  PubMed  Google Scholar 

  5. • Khakoo AY, Liu PP, Force T, Lopez-Berestein G, Jones LW, Schneider J, et al. Cardiotoxicity due to cancer therapy. Tex Heart Inst J. 2011;38:253–6. This paper provides clues to the prevention of cancer-therapy-induced cardiotoxicity and to the understanding of novel molecular-signaling pathways that are relevant to non-cancer-therapy-induced heart failure

    PubMed  PubMed Central  Google Scholar 

  6. Florescu M, Cinteza M, Vinereanu D. Chemotherapy-induced cardiotoxicity. Maedica (Buchar). 2013;8(1):59–67.

    Google Scholar 

  7. Christian JB, Finkle JK, Ky B, Douglas PS, Gutstein DE, et al. Cardiac imaging approaches to evaluate drug-induced myocardial dysfunction. Am Heart J. 2012;164(6):846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  9. Huang C, Zhang X, Ramil JM, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  CAS  PubMed  Google Scholar 

  11. Ederhy S, Cohen A, Dufaitre G, et al. QT interval prolongation among patients treated with angiogenesis inhibitors. Target Oncol. 2009;4(2):89–97.

    Article  PubMed  Google Scholar 

  12. •• Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2016. In this recent clinical practice guideline from American Society of Clinical Oncology, we found important recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers.

  13. Barac A. Yet another player in the cardio-oncology conundrum? Deciphering the role of FLT3. J Am Coll Cardiol. 2014;63(10):1020–1.

    Article  PubMed  Google Scholar 

  14. Goldhar HA, Yan AT, Ko DT, Earle CC, Tomlinson GA, Trudeau ME, et al. The temporal risk of heart failure associated with adjuvant trastuzumab in breast cancer patients: a population study. J Natl Cancer Inst. 2015;108(1).

  15. Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Med Cell Longev. 2015;2015:795602. doi:10.1155/2015/795602.

    Article  Google Scholar 

  16. •• Plana JC, Galderizi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39. It is a very useful and complete document about multimodality imaging evaluation of adult patients during and after cancer therapy

    Article  PubMed  Google Scholar 

  17. Thavendiranathan P, Poulin F, Lim K, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25):2751–68.

    Article  PubMed  Google Scholar 

  18. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  19. •• de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, Gotthardt M, Oyen WJ, Kapusta L, van Laarhoven HW. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med Technol. 2013;41(3):170–81. This review provides an overview of recent advances of scintigraphic techniques to measure cardiotoxicity

    Article  PubMed  Google Scholar 

  20. Stokkel MP, de Wit-van der Veen LJ, Boekhout A. I-123-MIBG myocardial imaging in trastuzumab-based cardiotoxicity: the first experience. Nucl Med Commun. 2013;34(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  21. Guimarães SL, Brandão SC, Andrade LR, Maia RJ, Markman FB. Cardiac sympathetic hyperactivity after chemotherapy: early sign of cardiotoxicity? Arq Bras Cardiol. 2015;105(3):228–34.

    PubMed  PubMed Central  Google Scholar 

  22. Jiji RS, Kramer CM, Salermo M. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol. 2012;19(2):377–88.

    Article  PubMed  PubMed Central  Google Scholar 

  23. D’Amore C. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014 Jul 28;6(7):486–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21(16):1387–96.

    Article  CAS  PubMed  Google Scholar 

  25. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10(4):391–9.

    Article  CAS  PubMed  Google Scholar 

  26. Pizzino F, Vizzari G, Qamar R, Bomzer C, Carerj S, Zito C, et al. Multimodality imaging in cardiooncology. J Oncol. 2015;2015:263950. doi:10.1155/2015/263950.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoffmann R, Barletta G, von Bardeleben S, Vanoverschelde JL, Kasprzak J, Greis C. Analysis of left ventricular volumes and function: a multicenter comparison of cardiac magnetic resonance imaging, cine ventriculography, and unenhanced and contrast-enhanced two-dimensional and three-dimensional echocardiography. J Am Soc Echocardiogr. 2014;27(3):292–301.

    Article  PubMed  Google Scholar 

  28. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    Article  CAS  PubMed  Google Scholar 

  29. D’Alto M, Maurea S, Basso A, Varrella P, Polverino W, Bianchi U, et al. The heterogeneity of myocardial sympathetic innervation in normal subjects: an assessment by iodine-123 metaiodobenzylguanidine scintigraphy. Cardiologia. 1998;43(11):1231–6.

    PubMed  Google Scholar 

  30. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. ADMIRE-HF investigators. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial iImaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  31. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. J Am Coll Cardiol Cardiovasc Imaging. 2010;3(1):92–100.

    Article  Google Scholar 

  32. Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, Steinmetz N, van Eck-Smit BL. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med. 2004;45:842–8.

    CAS  PubMed  Google Scholar 

  33. de Korte MA, de Vries EG, Lub-de Hooge MN, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43:2046–51.

    Article  PubMed  Google Scholar 

  34. Borde C, Kand P, Basu S. Enhanced myocardial fluorodeoxyglucose uptake following adriamycin-based therapy: evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 2012;4(5):220–3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oreto L, Todaro MC, Umland MM, Kramer C, Qamar R, Carerj S, et al. Use of echocardiography to evaluate the cardiac effects of therapies used in cancer treatment: what do we know? J Am Soc Echocardiogr. 2012;25(11):1141–52.

    Article  PubMed  Google Scholar 

  36. Stoddard MF, Seeger J, Liddell NF, Hadley TJ, Sullivan DM, Kupersmith J. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol. 1992;20:62–9.

    Article  CAS  PubMed  Google Scholar 

  37. Marchandise B, Schroeder E, Bosly A, Doyen C, Weynants P, Kremer R, et al. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7:141–6.

    Article  Google Scholar 

  38. Tan TC, Scherrer-Crosbie M. Assessing the cardiac toxicity of chemotherapeutic agents: role of echocardiography. Curr Cardiovasc Imaging Rep. 2012 Dec 1;5(6):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bergler-klein J. Strain and left ventricular volumes for predicting cardiotoxicity: a life-saving approach in anthracycline cancer treatment? Eur Heart J Cardiovasc Imaging. 2015;16:968–9.

    PubMed  Google Scholar 

  40. Bergler-klein J. Global longitudinal strain for predicting outcome after mitral repair or cardiac surgery: here to stay? Eur Heart J Cardiovasc Imaging. 2013;14(1):12–4.

  41. Hasselberg NE, Haugaa KH, Salvari SI, Gullestad L, Andreassen AK, Smiseth OA, et al. Left ventricular global longitudinal strain is associated with exercise capacity in failing hearts with preserved and reduced ejection fraction. Eur Heart J Cardiovasc Imaging. 2015;16:217–24.

    Article  PubMed  Google Scholar 

  42. Belém L, Salgado A, Felix A, Nascimento C. Ecocardiografia atual - Manual de novas técnicas. Rio de Janeiro: ed. Di livros; 2011.

  43. Castillo JMD. Strain cardiac. Rio de Janeiro: Ed Revinter Ltda; 2013.

    Google Scholar 

  44. Almeida ALC, Gjesdal O, Mewton N, Choi E, Teixido-Tura G, Youneyama K, et al. Speckle- Tracking pela Ecocardiografia Bidimensional- Aplica- Introdução Conceitos. Rev Bras Ecocardiog Imagem Cardiovasc. 2013;26:38–49.

    Google Scholar 

  45. Mousavi N, Tan T, Ali M, Halpern E, Wang L, Scherrer-Crosbie M. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50–59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 2015;16(9):977–84.

    PubMed  Google Scholar 

  46. Voigt J, Pedrizzetti G, Lysyansky P, Marwick T, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2014;16(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  47. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006;114(7):654–61.

    Article  PubMed  Google Scholar 

  48. Jenkins C, Bricknell K, Chan J, et al. Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am J Cardiol. 2007;99(3):300–6.

    Article  PubMed  Google Scholar 

  49. Qi X, Cogar B, Hsiung MC, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of left ventricular volumes, ejection fraction, and mass compared with magnetic resonance imaging. Echocardiography. 2007;24(2):166–73.

    Article  PubMed  Google Scholar 

  50. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84.

    Article  PubMed  Google Scholar 

  51. Kongbundansuk S, Hundley G. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. J Am Coll Cardiol Img. 2014;7(8):824–38.

    Article  Google Scholar 

  52. Baratta S, Damiano MA, Marchese ML, Trucco JI, Rizzo MM, Bernock F, et al. Serum markers, conventional Doppler echocardiography and two-dimensional systolic strain in the diagnosis of chemotherapy-induced myocardial toxicity. Rev Argent Cardiol. 2013;81:139–46.

    Article  Google Scholar 

  53. Thavendiranathan P, Wintersperger B, Flamm S, Marwick T. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6(6):1080–91.

    Article  PubMed  Google Scholar 

  54. • Ylänen K, Poutanen T, Savikurki-Heikkilä P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61(14):1539–47. This study evaluated the left ventricular (LV) and right ventricular (RV) function and signs of focal fibrosis among long-term survivors of childhood cancer with the use of cardiac magnetic resonance (CMR) imaging. A markedly high proportion of these patients appear to have a cardiac dysfunction detectable by CMR with the RV also being involved, but without focal myocardial fibrosis

    Article  PubMed  Google Scholar 

  55. Armstrong G, Plana J, Zhang N, Srivastava D, Green D, Ness K, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Drafts B, Twomley K, D'Agostino R, Lawrence J, Avis N, Ellis L, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. J Am Coll Cardiol Img. 2013;6(8):877–85.

    Article  Google Scholar 

  57. Neilan T, Coelho-Filho O, Pena-Herrera D, Shah R, Jerosch-Herold M, Francis S, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol. 2012;110(11):1679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lunning M, Kutty S, Rome E, Li L, Padiyath A, Loberiza F, et al. Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy. Am J Clin Oncol. 2015;38(4):377–81.

    Article  CAS  PubMed  Google Scholar 

  59. Toro-Salazar O, Gillan E, O'Loughlin M, Burke G, Ferranti J, Stainsby J, et al. Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging. 2013;6(6):873–80.

    Article  PubMed  Google Scholar 

  60. Doltra A, Amundsen B, Gebker R, Fleck E, Kelle S. Emerging concepts for myocardial late gadolinium enhancement MRI. Curr Cardiol Rev. 2013;9(3):185–90.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stirrat J, White J. The prognostic role of late gadolinium enhancement magnetic resonance imaging in patients with cardiomyopathy. Can J Cardiol. 2013;29(3):329–36.

    Article  PubMed  Google Scholar 

  62. Ugander M, Oki A, Hsu L, Kellman P, Greiser A, Aletras A, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33(10):1268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. • Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48. In children, following anthracycline therapy, myocardial T 1 values and calculated extracellular volume fraction correlated with cumulative chemotherapy dose, exercise capacity, and subtle structural remodeling. Novel measures of diffuse fibrosis may prove to be early non-invasive tissue biomarkers of chronic anthracycline cardiotoxicity in the future

    Article  PubMed  PubMed Central  Google Scholar 

  64. Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013;111(5):717–22.

    Article  CAS  PubMed  Google Scholar 

  65. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5(6):596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grover S, Leong D, Chakrabarty A, Joerg L, Kotasek D, Cheong K, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168(6):5465–7.

    Article  PubMed  Google Scholar 

  67. Jordan J, D'Agostino R, Hamilton C, Vasu S, Hall M, Kitzman D, et al. Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2014;7(6):872–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Cristina Soares Brandão.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the topical collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simoni, L.J.C., Brandão, S.C.S. New Imaging Methods for Detection of Drug-Induced Cardiotoxicity in Cancer Patients. Curr Cardiovasc Imaging Rep 10, 18 (2017). https://doi.org/10.1007/s12410-017-9415-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-017-9415-3

Keywords

Navigation