Skip to main content
Log in

T1 Mapping for the Study of Cardiac Hypertrophy

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Cardiovascular magnetic resonance has a fundamental role for diagnostic and prognostic assessment of cardiac hypertrophy. T1 mapping is a rapidly evolving field, and in the last years, many studies have applied this technique to study cardiac hypertrophy. In the current review, we discuss the results of the main studies on this topic, and we provide some insight on potential applications of this technique and unsolved questions that warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. N Engl J Med. 2015;373:96.

    Article  PubMed  Google Scholar 

  2. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2614–62.

    Article  PubMed  Google Scholar 

  3. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  4. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141–6. describes the recently developed T1-mapping technique to assess quantitatively diffuse myocardial fibrosis.

    Article  PubMed  Google Scholar 

  5. Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35:657–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2007;9:653–8.

    Article  PubMed  Google Scholar 

  7. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44:2383–9.

    Article  PubMed  Google Scholar 

  8. Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2014;71:2082–95.

    Article  PubMed  Google Scholar 

  10. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.

    Article  PubMed  Google Scholar 

  11. White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6:955–62.

    Article  PubMed  Google Scholar 

  12. Stuckey DJ, McSweeney SJ, Thin MZ, et al. T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging. 2014;7:240–9.

    Article  PubMed  Google Scholar 

  13. Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8:172–80.

    Article  PubMed  Google Scholar 

  14. Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson. 2012;14:27.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med. 2011;65:1407–15.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lee JJ, Liu S, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson. 2011;13:75.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schelbert EB, Testa SM, Meier CG, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson. 2011;13:16.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.

    Article  CAS  PubMed  Google Scholar 

  20. Querejeta R, Lopez B, Gonzalez A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110:1263–8.

    Article  CAS  PubMed  Google Scholar 

  21. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105:2512–7.

    Article  CAS  PubMed  Google Scholar 

  22. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.

    Article  CAS  PubMed  Google Scholar 

  23. Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3, e000790.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Su MY, Lin LY, Tseng YH, et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging. 2014;7:991–7.

    Article  PubMed  Google Scholar 

  25. Doltra A, Messroghli DR, Stawowy P, et al. Potential reduction of interstitial myocardial fibrosis with renal denervation. J Am Heart Assoc. 2014;3:e001353. first study demonstrating in humans a simultaneous regression of myocardial cell mass and extracellular matrix after treatment.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350:127–33.

    Article  CAS  PubMed  Google Scholar 

  27. Cannan CR, Reeder GS, Bailey KR, Melton 3rd LJ, Gersh BJ. Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation. 1995;92:2488–95.

    Article  CAS  PubMed  Google Scholar 

  28. Adabag AS, Maron BJ, Appelbaum E, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51:1369–74.

    Article  PubMed  Google Scholar 

  29. O'Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    Article  PubMed  Google Scholar 

  30. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41:1561–7.

    Article  PubMed  Google Scholar 

  31. Bruder O, Wagner A, Jensen CJ, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:875–87.

    Article  PubMed  Google Scholar 

  32. Almaas VM, Haugaa KH, Strom EH, et al. Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace. 2013;15:1319–27.

    Article  PubMed  Google Scholar 

  33. Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84. first study demonstrating in multivariable analysis that native T1 had the best diagnostic performance to identify patients with cardiomyopathy compared to controls.

    Article  PubMed  Google Scholar 

  34. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436–41.

    Article  PubMed  Google Scholar 

  35. Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.

    Article  PubMed  Google Scholar 

  37. Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:415–22.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Chen Z, Sohal M, Voigt T, et al. Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm. 2015;12:792–801.

    Article  PubMed  Google Scholar 

  39. Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007;93:528–35.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Elliott P, Baker R, Pasquale F, et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry Disease survey. Heart. 2011;97:1957–60.

    Article  PubMed  Google Scholar 

  41. Hughes DA, Elliott PM, Shah J, et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart. 2008;94:153–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.

    Article  PubMed  Google Scholar 

  43. Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:99.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc. 2012;1, e000364.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:186–93.

    Article  PubMed  Google Scholar 

  46. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  47. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36:244–51.

    Article  PubMed Central  PubMed  Google Scholar 

  48. La Gerche A, Taylor AJ, Prior DL. Athlete's heart: the potential for multimodality imaging to address the critical remaining questions. JACC Cardiovasc Imaging. 2009;2:350–63.

    Article  PubMed  Google Scholar 

  49. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119:1085–92.

    Article  PubMed  Google Scholar 

  50. Wilson M, O'Hanlon R, Prasad S, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6. 1985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

Sarah B. Nasser was supported by Dar Al Fouad Hospital. Sebastian Kelle was supported by Philips Healthcare and DZHK (German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kelle.

Ethics declarations

Conflict of Interest

Adelina Doltra, Sarah B. Nasser, Daniel Messroghli, Rolf Gebker, Bernhard Schnackenburg, and Sebastian Kelle declare that they have no conflict of interest.

Burkert Pieske reports board membership with Bayer Healthcare, Stealth Peptides, Novartis, and Servier, and consultancy for Astra Zeneca and Daiichi-Sankyo.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doltra, A., Nasser, S.B., Messroghli, D. et al. T1 Mapping for the Study of Cardiac Hypertrophy. Curr Cardiovasc Imaging Rep 8, 46 (2015). https://doi.org/10.1007/s12410-015-9362-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9362-9

Keywords

Navigation