Skip to main content
Log in

Coronary Artery Anomalies: a Pictorial Review

  • Cardiac Computed Tomography (TC Villines, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Coronary artery anomalies range in prevalence from 0.2 to 2.3 % of the population. They range from benign incidental findings to an important cause of sudden cardiac death (SCD). In fact, coronary anomalies are the second leading cause of SCD in athletes and are responsible for ∼30 % of SCD in the young. Clinically, anomalous coronary arteries arising from the opposite sinus and anomalous left coronary artery arising from the pulmonary artery are the most important as they are associated with the highest risk of mortality. Several high-risk features and their pathophysiology are reviewed. Multiple imaging modalities have been utilized to study coronary artery anomalies; however, coronary computed tomography angiography (CTA) is uniquely suited to characterize coronary artery anomalies as it allows for clear elucidation of origin, course, and termination in relationship to other relevant anatomy with high spatial resolution. This paper will provide an overview of the wide spectrum of coronary artery anomalies and variants, review the most relevant coronary CTA imaging features for each, and differentiate benign from malignant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Namgung J, Kim JA. The prevalence of coronary anomalies in a single center of Korea: origination, course, and termination anomalies of aberrant coronary arteries detected by ECG-gated cardiac MDCT. BMC Cardiovasc Disord. 2014;14:48. doi:10.1186/1471-2261-14-48. It describes a very large cohort of CCTA patients from a single institution, helping understand the prevalence of anomalous coronary arteries.

    Article  PubMed Central  PubMed  Google Scholar 

  2. von Ziegler F, Pilla M, McMullan L, Panse P, Leber AW, Wilke N, et al. Visualization of anomalous origin and course of coronary arteries in 748 consecutive symptomatic patients by 64-slice computed tomography angiography. BMC Cardiovasc Disord. 2009;9:54. doi:10.1186/1471-2261-9-54.

    Article  Google Scholar 

  3. Opolski MP, Pregowski J, Kruk M, Witkowski A, Kwiecinska S, Lubienska E, et al. Prevalence and characteristics of coronary anomalies originating from the opposite sinus of Valsalva in 8,522 patients referred for coronary computed tomography angiography. Am J Cardiol. 2013;111(9):1361–7. doi:10.1016/j.amjcard.2013.01.280. It also describes a very large cohort of CCTA patients from a single institution, helping understand the prevalence of anomalous coronary arteries.

    Article  PubMed  Google Scholar 

  4. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Catheter Cardiovasc Diagn. 1990;21(1):28–40.

    Article  CAS  Google Scholar 

  5. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119(8):1085–92. doi:10.1161/CIRCULATIONAHA.108.804617.

    Article  PubMed  Google Scholar 

  6. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    Article  PubMed  Google Scholar 

  7. Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH. Multislice CT imaging of anomalous coronary arteries. Eur Radiol. 2004;14(12):2172–81. doi:10.1007/s00330-004-2490-2.

    Article  PubMed  Google Scholar 

  8. Schmitt R, Froehner S, Brunn J, Wagner M, Brunner H, Cherevatyy O, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur Radiol. 2005;15(6):1110–21. doi:10.1007/s00330-005-2707-z.

    Article  PubMed  Google Scholar 

  9. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118(23):e714–833. doi:10.1161/CIRCULATIONAHA.108.190690.

    Article  PubMed  Google Scholar 

  10. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr. 2010;4(6):407 e1–33. doi:10.1016/j.jcct.2010.11.001.

    Google Scholar 

  11. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J. 1989;117(2):418–34.

    Article  CAS  PubMed  Google Scholar 

  12. Angelini P, Velasco JA, Flamm S. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation. 2002;105(20):2449–54.

    Article  PubMed  Google Scholar 

  13. Nasis A, Machado C, Cameron JD, Troupis JM, Meredith IT, Seneviratne SK. Anatomic characteristics and outcome of adults with coronary arteries arising from an anomalous location detected with coronary computed tomography angiography. Int J Cardiovasc Imaging. 2015;31(1):181–91. doi:10.1007/s10554-014-0535-4.

    Article  PubMed  Google Scholar 

  14. Yu FF, Lu B, Gao Y, Hou ZH, Schoepf UJ, Spearman JV, et al. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr. 2013;7(6):383–90. doi:10.1016/j.jcct.2013.11.004.

    Article  PubMed  Google Scholar 

  15. Topaz O, DiSciascio G, Cowley MJ, Soffer A, Lanter P, Goudreau E, et al. Absent left main coronary artery: angiographic findings in 83 patients with separate ostia of the left anterior descending and circumflex arteries at the left aortic sinus. Am Heart J. 1991;122(2):447–52.

    Article  CAS  PubMed  Google Scholar 

  16. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation. 1968;38(2):403–25.

    Article  CAS  PubMed  Google Scholar 

  17. Dodge-Khatami A, Mavroudis C, Backer CL. Anomalous origin of the left coronary artery from the pulmonary artery: collective review of surgical therapy. Ann Thorac Surg. 2002;74(3):946–55.

    Article  PubMed  Google Scholar 

  18. Donataccio MP, Li W, Ramasamy M, Senior R. Anomalous origin of left coronary artery from the pulmonary artery (ALCAPA): a rare presentation in late adulthood. Int J Cardiol. 2014;182C:179–80. doi:10.1016/j.ijcard.2014.12.127.

    Google Scholar 

  19. Schwartz ML, Jonas RA, Colan SD. Anomalous origin of left coronary artery from pulmonary artery: recovery of left ventricular function after dual coronary repair. J Am Coll Cardiol. 1997;30(2):547–53.

    Article  CAS  PubMed  Google Scholar 

  20. Williams IA, Gersony WM, Hellenbrand WE. Anomalous right coronary artery arising from the pulmonary artery: a report of 7 cases and a review of the literature. Am Heart J. 2006;152(5):1004 e9–17. doi:10.1016/j.ahj.2006.07.023.

    Google Scholar 

  21. Correia E, Ferreira P, Rodrigues B, Santos L, Faria R, Nunes L, et al. Prevalence of anomalous origin of coronary arteries: a retrospective study in a Portuguese population. Rev Port Cardiol. 2010;29(2):221–9.

    PubMed  Google Scholar 

  22. Villines TC, Devine PJ, Cheezum MK, Gibbs B, Feuerstein IM, Welch TS. Incidence of anomalous coronary artery origins in 577 consecutive adults undergoing cardiac CT angiography. Int J Cardiol. 2010;145(3):525–6. doi:10.1016/j.ijcard.2010.04.059.

    Article  PubMed  Google Scholar 

  23. Krupinski M, Urbanczyk-Zawadzka M, Laskowicz B, Irzyk M, Banys R, Klimeczek P, et al. Anomalous origin of the coronary artery from the wrong coronary sinus evaluated with computed tomography: “high-risk” anatomy and its clinical relevance. Eur Radiol. 2014;24(10):2353–9. doi:10.1007/s00330-014-3238-2. It evaluates a large cohort of 7,115 CCTA patients and found that the highest rates of chest pain and cardiac events occurred in anomalous right coronary arteries, not left. They also noted that anomalous right coronaries were more likely to have an interarterial course in this cohort which are unique findings.

    Article  PubMed  Google Scholar 

  24. Szymczyk K, Polguj M, Szymczyk E, Majos A, Grzelak P, Stefanczyk L. Prevalence of congenital coronary artery anomalies and variants in 726 consecutive patients based on 64-slice coronary computed tomography angiography. Folia Morphol (Warsz). 2014;73(1):51–7. doi:10.5603/FM.2014.0007.

    Article  CAS  Google Scholar 

  25. Park JH, Kwon NH, Kim JH, Ko YJ, Ryu SH, Ahn SJ, et al. Prevalence of congenital coronary artery anomalies of Korean men detected by coronary computed tomography. Korean Circ J. 2013;43(1):7–12. doi:10.4070/kcj.2013.43.1.7.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhang LJ, Yang GF, Huang W, Zhou CS, Chen P, Lu GM. Incidence of anomalous origin of coronary artery in 1879 Chinese adults on dual-source CT angiography. Neth Heart J Mon J Neth Soc Cardiol Neth Heart Found. 2010;18(10):466–70.

    Article  CAS  Google Scholar 

  27. Cheng Z, Wang X, Duan Y, Wu L, Wu D, Liang C, et al. Detection of coronary artery anomalies by dual-source CT coronary angiography. Clin Radiol. 2010;65(10):815–22. doi:10.1016/j.crad.2010.06.003.

    Article  CAS  PubMed  Google Scholar 

  28. Kosar P, Ergun E, Ozturk C, Kosar U. Anatomic variations and anomalies of the coronary arteries: 64-slice CT angiographic appearance. Diagn Interv Radiol. 2009;15(4):275–83. doi:10.4261/1305-3825.DIR.2550-09.1.

    PubMed  Google Scholar 

  29. Duran C, Kantarci M, Durur Subasi I, Gulbaran M, Sevimli S, Bayram E, et al. Remarkable anatomic anomalies of coronary arteries and their clinical importance: a multidetector computed tomography angiographic study. J Comput Assist Tomogr. 2006;30(6):939–48. doi:10.1097/01.rct.0000230004.38521.8e.

    Article  PubMed  Google Scholar 

  30. Sato Y, Inoue F, Matsumoto N, Tani S, Takayama T, Yoda S, et al. Detection of anomalous origins of the coronary artery by means of multislice computed tomography. Circ J Off J Jpn Circ Soc. 2005;69(3):320–4.

    Google Scholar 

  31. Davis JA, Cecchin F, Jones TK, Portman MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol. 2001;37(2):593–7.

    Article  CAS  PubMed  Google Scholar 

  32. Pelliccia A, Spataro A, Maron BJ. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72(12):978–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zeppilli P, dello Russo A, Santini C, Palmieri V, Natale L, Giordano A, et al. In vivo detection of coronary artery anomalies in asymptomatic athletes by echocardiographic screening. Chest. 1998;114(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  34. Mohsen GA, Mohsin KG, Forsberg M, Miller E, Taniuchi M, Klein AJ. Anomalous left circumflex artery from the right coronary cusp: a benign variant? J Invasive Cardiol. 2013;25(6):284–7. In a small cohort of anomalous left circumflex artery patients, they demonstrate a very high rate of atherosclerosis in anomalous LCx.

    PubMed  Google Scholar 

  35. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20(3):640–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kragel AH, Roberts WC. Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am J Cardiol. 1988;62(10 Pt 1):771–7.

    Article  CAS  PubMed  Google Scholar 

  38. Virmani R, Chun PK, Rogan K, Riddick L. Anomalous origin of four coronary ostia from the right sinus of Valsalva. Am J Cardiol. 1989;63(11):760–1.

    Article  CAS  PubMed  Google Scholar 

  39. Roberts WC, Kragel AH. Anomalous origin of either the right or left main coronary artery from the aorta without coursing of the anomalistically arising artery between aorta and pulmonary trunk. Am J Cardiol. 1988;62(17):1263–7.

    Article  CAS  PubMed  Google Scholar 

  40. Frescura C, Basso C, Thiene G, Corrado D, Pennelli T, Angelini A, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  41. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, a not-so-minor congenital anomaly. Circulation. 1974;50(4):780–7.

    Article  CAS  PubMed  Google Scholar 

  42. Grollman Jr JH, Mao SS, Weinstein SR. Arteriographic demonstration of both kinking at the origin and compression between the great vessels of an anomalous right coronary artery arising in common with a left coronary artery from above the left sinus of Valsalva. Catheter Cardiovasc Diagn. 1992;25(1):46–51.

    Article  Google Scholar 

  43. Angelini P, Velasco JA, Ott D, Khoshnevis GR. Anomalous coronary artery arising from the opposite sinus: descriptive features and pathophysiologic mechanisms, as documented by intravascular ultrasonography. J Invasive Cardiol. 2003;15(9):507–14.

    PubMed  Google Scholar 

  44. Lee SH, Koo BK, Yu CH, Kim JH, Park KW, Kang HJ, et al. Physiologic assessment of anomalous origin of right coronary artery from left coronary cusp using dobutamine stress fractional flow reserver. J Am Coll Cardiol. 2012;59(13s1):E832-E. In a superb investigation, the authors demonstrate, through the tools of FFR and IVUS, that anomalous right coronary arteries with an interarterial course and slit like ostia demonstrate ischemia (FFR <0.80) and have significant stenosis on IVUS. They also reinforce that stress testing is unreliable to predict ischemia in ACAOS.

    Article  Google Scholar 

  45. Pursnani A, Jacobs JE, Saremi F, Levisman J, Makaryus AN, Capunay C, et al. Coronary CTA assessment of coronary anomalies. J Cardiovasc Comput Tomogr. 2012;6(1):48–59. doi:10.1016/j.jcct.2011.06.009.

    Article  PubMed  Google Scholar 

  46. Musiani A, Cernigliaro C, Sansa M, Maselli D, De Gasperis C. Left main coronary artery atresia: literature review and therapeutical considerations. Eur J Cardiothorac Surg Off J Eur Assoc Cardiothorac Surg. 1997;11(3):505–14.

    Article  CAS  Google Scholar 

  47. Reyman H. Disertatio de vasis cordis propriis. Med Diss Univ Göttingen. 1737;7th Sept:1–32.

  48. Verhagen SN, Rutten A, Meijs MF, Isgum I, Cramer MJ, van der Graaf Y, et al. Relationship between myocardial bridges and reduced coronary atherosclerosis in patients with angina pectoris. Int J Cardiol. 2013;167(3):883–8. doi:10.1016/j.ijcard.2012.01.091.

    Article  PubMed  Google Scholar 

  49. Nakaura T, Nagayoshi Y, Awai K, Utsunomiya D, Kawano H, Ogawa H, et al. Myocardial bridging is associated with coronary atherosclerosis in the segment proximal to the site of bridging. J Cardiol. 2014;63(2):134–9. doi:10.1016/j.jjcc.2013.07.005. Atherosclerosis is more likely to occur in the coronary artery segment prior to a myocardial bridge.

    Article  PubMed  Google Scholar 

  50. Mohlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation. 2002;106(20):2616–22.

    Article  PubMed  Google Scholar 

  51. Tovar EA, Borsari A, Landa DW, Weinstein PB, Gazzaniga AB. Ventriculotomy repair during revascularization of intracavitary anterior descending coronary arteries. Ann Thorac Surg. 1997;64(4):1194–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ma ES, Ma GL, Yu HW, Wu W, Li K. Assessment of myocardial bridge and mural coronary artery using ECG-gated 256-slice CT angiography: a retrospective study. Sci World J. 2013;2013:947876. doi:10.1155/2013/947876.

    Google Scholar 

  53. Konen E, Goitein O, Sternik L, Eshet Y, Shemesh J, Di Segni E. The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study. J Am Coll Cardiol. 2007;49(5):587–93. doi:10.1016/j.jacc.2006.09.039.

    Article  PubMed  Google Scholar 

  54. Vanker EA, Ajayi NO, Lazarus L, Satyapal KS. The intramyocardial left anterior descending artery: prevalence and surgical considerations in coronary artery bypass grafting. S Afr J Surg. 2014;52(1):18–21.

    CAS  PubMed  Google Scholar 

  55. Sahni D, Jit I. Incidence of myocardial bridges in northwest Indians. Indian Heart J. 1991;43(6):431–6.

    CAS  PubMed  Google Scholar 

  56. Hartnell GG, Parnell BM, Pridie RB. Coronary artery ectasia. Its prevalence and clinical significance in 4993 patients. Br Heart J. 1985;54(4):392–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94(6):1379–85.

    Article  CAS  PubMed  Google Scholar 

  58. Said SA, Lam J, van der Werf T. Solitary coronary artery fistulas: a congenital anomaly in children and adults. A contemporary review. Congenit Heart Dis. 2006;1(3):63–76. doi:10.1111/j.1747-0803.2006.00012.x.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

J McLarry declares no conflicts of interest.

M Ferencik has received research grants from the American Heart Association (13FTF16450001).

MD Shapiro declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Shapiro.

Additional information

This article is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLarry, J., Ferencik, M. & Shapiro, M.D. Coronary Artery Anomalies: a Pictorial Review. Curr Cardiovasc Imaging Rep 8, 23 (2015). https://doi.org/10.1007/s12410-015-9339-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9339-8

Keywords

Navigation