Skip to main content

Advertisement

Log in

Application of Cardiac Neurohormonal Imaging to Heart Failure, Transplantation, and Diabetes

  • Molecular Imaging (R Russell, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

The neurohormonal system adapts to body demands, but in cardiac disease it can become maladaptive. A key component, the sympathetic nervous system, can be imaged with radiotracers such as iodine-123-meta-iodobenzylguanidine (123I-mIBG), a norepinephrine analogue. Parameters assessed are the heart-to-mediastinal ratio (HMR), tracer washout, and regional single photon emission computed tomography (SPECT) defects. Much focus has been on heart failure that has a large neurohormonal pathophysiologic component. 123I-mIBG imaging has powerful risk stratification ability for this high morbidity/mortality condition. A lower HMR increases the likelihood of clinical worsening, ventricular arrhythmias, and cardiac death. 123I-mIBG imaging could potentially guide the use of biventricular pacemakers and ventricular assist devices. Much focus has been on better identifying patients likely to benefit from an implantable cardiac defibrillator. For patients with heart transplant, imaging with 123I-mIBG or the positron emission tomographic (PET) tracer, 11C-hydroxyephedrine (HED), can monitor recovery. In diabetes mellitus, imaging can recognize risk from cardiac autonomic dysfunction prior to clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bell DR. Control mechanisms in circulatory function. In: Rhoades RA, Bell DR, editors. Medical physiology: principles of clinical medicine. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013. p. 317–20.

    Google Scholar 

  2. Colucci WS. Pathophysiology of heart failure: Neurohumoral adaptations. http://www.uptodate.com/contents/pathophysiology-of-heart-failure-neurohumoral-adaptations, accessed 7/2/2014; topic last updated September 19, 2013.

  3. Francis GS. Neurohormonal control of heart failure. Cleve Clin J Med. 2011;78:S75–9.

    Article  PubMed  Google Scholar 

  4. Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: W.B. Saunders Company; 1995. p. 441–2.

    Google Scholar 

  5. Carrió I. Cardiac neurotransmission imaging. J Nucl Med. 2001;42(7):1062–76.

    PubMed  Google Scholar 

  6. Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin. 2009;27:311–27.

    Article  PubMed  Google Scholar 

  7. Verrier RL, Antzelevich C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol. 2004;19:2–11.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sisson JC, Wieland DM. Radiolabeled meta-iodobenzylguanidine pharmacology: pharmacology and clinical studies. Am J Physiol Imaging. 1986;1:96–103.

    CAS  PubMed  Google Scholar 

  9. Wieland DM, Mangner TJ, Inbasekaran MN, et al. Adrenal medulla imaging agents: a structure-distribution relationship study of radiolabeled aralkylguanidines. J Med Chem. 1984;27:149–55.

    Article  CAS  PubMed  Google Scholar 

  10. Kline RC, Swanson DP, Wieland DM, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med. 1981;22:129–32.

    CAS  PubMed  Google Scholar 

  11. Raffel DM, Wieland DM. Development of mIBG as a cardiac innervation imaging agent. J Am Coll Cardiol Img. 2010;3:111–6.

    Article  Google Scholar 

  12. Flotats A, Carrió I, Agostini D, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  13. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16:113–21.

    Article  PubMed  Google Scholar 

  14. Tilkemeier PL, Wackers FJT. Myocardial perfusion planar imaging. J Nucl Cardiol. 2006;13:e91–6.

    Article  PubMed  Google Scholar 

  15. Holly TA, Abbott BG, Al-Mallah M, et al. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17:941–73.

    Article  PubMed  Google Scholar 

  16. Verberne HJ, Feenstra C, de Jong WM, et al. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging. 2005;32:1100–7.

    Article  PubMed  Google Scholar 

  17. Agostini D, Belin A, Amar MH, et al. Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med. 2000;41:845–51.

    CAS  PubMed  Google Scholar 

  18. Gerson MC, Craft LL, McGuire N, et al. Carvedilol improves left ventricular function in heart failure with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol. 2002;9:608–15.

    Article  PubMed  Google Scholar 

  19. Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure. J Am Coll Cardiol. 2003;41:231–8.

    Article  PubMed  Google Scholar 

  20. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart. What have we learned clinically? Eur J Nucl Med. 2000;27:1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  22. Chen GP, Tabibiazar R, Branch KR, et al. Cardiac receptor physiology and imaging: an update. J Nucl Cardiol. 2005;12:714–30.

    Article  PubMed  Google Scholar 

  23. Morozumi T, Kusuoka H, Fukuchi K, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med. 1997;38:49–52.

    CAS  PubMed  Google Scholar 

  24. Ogita H, Shimonagata T, Fukunami M, et al. Prognostic significance of cardiac 123I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure: a prospective study. Heart. 2001;86:656–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Veltman CE, Boogers MJ, Meinardi JE, et al. Reproducibility of planar 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy in patients with heart failure. Eur J Nucl Med Mol Imaging. 2012;39:1599–608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Minardo JD, Tuli MM, Mock BH, et al. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation. 1988;78:1008–19.

    Article  CAS  PubMed  Google Scholar 

  27. Bax JJ, Kraft O, Buxton AE, et al. 123I-mIBG Scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  28. Boogers MJ, Borleffs CJ, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77.

    Article  PubMed  Google Scholar 

  29. Marshall A, Cheetham A, George RS, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts ventricular arrhythmia in heart failure patients receiving an implantable cardioverter-defibrillator for primary prevention. Heart. 2012;98:1359–65.

    Article  PubMed  Google Scholar 

  30. Verberne HJ, Henzlova MJ, Jain D, et al. Regional myocardial mismatch between 123I-MIBG and 99mTc-tetrofosmin SPECT for the prediction of arrhythmic events in ischemic heart failure patients. J Nucl Cardiol. 2014;21:799. abstract.

    Google Scholar 

  31. Go AS, Mozaffarian D, Roger VL, On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  32. Flotats A, Carrió I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol. 2004;11:587–602.

    Article  PubMed  Google Scholar 

  33. Schofer J, Spielmann R, Schuchert A, et al. Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1988;12:1252–8.

    Article  CAS  PubMed  Google Scholar 

  34. Merlet P, Valette H, Dubois-Randé J, et al. Prognostic value of cardiac metaiodobenzylguanidine in patients with heart failure. J Nucl Med. 1992;33:471–7.

    CAS  PubMed  Google Scholar 

  35. Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol. 1998;5:579–90.

    Article  CAS  PubMed  Google Scholar 

  36. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  37. Agostini D, Verberne HJ, Burchert W, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35:535–46.

    Article  PubMed  Google Scholar 

  38. Nakata T, Nakajima K, Yamashina S, et al. A pooled analysis of multicenter cohort studies of I-123-mIBG cardiac sympathetic innervation imaging for assessment of long-term prognosis in chronic heart failure. J Am Coll Cardiol Img. 2013;6:772–84.

    Article  Google Scholar 

  39. Shaw LJ, Min JK, Hachamovitch R, et al. Cardiovascular imaging research at the crossroads. J Am Coll Cardiol Imaging. 2010;3:316–24.

    Article  Google Scholar 

  40. Treglia G, Stefanelli I, Giordano BA. Clinical usefulness of myocardial innervation imaging using iodine-123-meta-iodobenzylguanidine scintigraphy in evaluating the effectiveness of pharmacological treatments in patients with heart failure: an overview. Eur Rev Med Pharmacol Sci. 2013;17:56–8.

    CAS  PubMed  Google Scholar 

  41. Toyama T, Aihara Y, Iwasaki T, et al. Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after β-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med. 1999;40:217–23.

    CAS  PubMed  Google Scholar 

  42. Takeishi Y, Atsumi H, Fujiwara S, et al. ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med. 1997;38:1085–9.

    CAS  PubMed  Google Scholar 

  43. Kasama S, Toyama T, Kumakura H, et al. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med. 2003;44:884–90.

    CAS  PubMed  Google Scholar 

  44. Kasama S, Toyama T, Kumakura H, et al. Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med. 2002;43:1279–85.

    CAS  PubMed  Google Scholar 

  45. Choi JY, Lee KH, Hong KP, et al. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol. 2001;8:4–9.

    Article  CAS  PubMed  Google Scholar 

  46. Udelson JE, Shafer CD, Carrió I. Radionuclide imaging in heart failure: assessing etiology and outcomes and implications for management. J Nucl Cardiol. 2002;9:S40–52.

    Article  Google Scholar 

  47. Jessup M, Abraham WT, Casey DE, Writing on behalf of the 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult Writing Committee, et al. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2009;53:1343–82.

    Article  Google Scholar 

  48. Kremers MS, Hammill SC, Berul CI, et al. The National ICD Registry Report: version 2.1 including leads and pediatrics for years 2010 and 2011. Heart Rhythm. 2013;10:e59–65.

    Article  PubMed  Google Scholar 

  49. Myerburg RJ. Implantable cardioverter-defibrillators after myocardial infarction. N Engl J Med. 2008;359:2245–53.

    Article  CAS  PubMed  Google Scholar 

  50. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  CAS  PubMed  Google Scholar 

  51. Lee DS, Krahn AD, Healey JS, et al. Evaluation of early complications related to De Novo cardioverter defibrillator implantation insights from the Ontario ICD database. J Am Coll Cardiol. 2010;55:774–82.

    Article  PubMed  Google Scholar 

  52. Vollmann D, Lüthje L, Vonhof S, Unterberg C. Inappropriate therapy and fatal proarrhythmia by an implantable cardioverter-defibrillator. Heart Rhythm. 2005;2:307–9.

    Article  PubMed  Google Scholar 

  53. McGhie AI, Corbett JR, Akers MS, et al. Regional cardiac adrenergic function using I-123 MIBG SPECT imaging after acute myocardial infarction. Am J Cardiol. 1991;67:236–42.

    Article  CAS  PubMed  Google Scholar 

  54. Stanton MS, Tuli MM, Radtke NL, et al. Regional sympathetic denervation after MI in humans detected noninvasively using I-123-MIBG. J Am Coll Cardiol. 1989;14:1519–26.

    Article  CAS  PubMed  Google Scholar 

  55. Gerson MC, Abdallah M, Muth JN, Costea AI. Will imaging assist in the selection of patients with heart failure for an ICD? J Am Coll Cardiol Imaging. 2010;3:101–10.

    Article  Google Scholar 

  56. Arora R, Ferrick KJ, Nakata T, et al. I-123 MIBG imaging and heart rate variability analysis to predict the needs for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10:121–31.

    Article  PubMed  Google Scholar 

  57. Nagahara D, Nakata T, Hashimoto A, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med. 2008;49:225–33.

    Article  PubMed  Google Scholar 

  58. Kasama S, Toyama T, Sumino H, et al. Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med. 2008;49:907–14.

    Article  PubMed  Google Scholar 

  59. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  60. Passman R, Goldberger JJ. Predicting the future: risk stratification for sudden cardiac death in patients with left ventricular dysfunction. Circulation. 2012;125:3031–7.

    Article  PubMed  Google Scholar 

  61. Buxton AE. Not everyone with an ejection fraction ≤30% should receive an ICD. Circulation. 2005;111:2537–49.

    Article  PubMed  Google Scholar 

  62. Shah AM, Bourgoun M, Narula J, et al. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. J Am Coll Cardiol Img. 2012;5:1139–46. A subanalysis of ADMIRE-HF data showing that 123I-mIBG imaging also has risk stratification utility in patients with LVEFs ≥35%.

    Article  Google Scholar 

  63. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    Article  CAS  PubMed  Google Scholar 

  64. Fallavollita JA, Canty JM. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol. 2010;17:1107–15.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Simões MV, Barthel P, Matsunari I, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551–7.

    Article  PubMed  Google Scholar 

  66. Luisi Jr AJ, Suzuki G, Dekemp R, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368–74.

    CAS  PubMed  Google Scholar 

  67. Fallavollita JA, Heavey BM, Luisi Jr AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9. A study of patients with hibernating myocardium showing that adrenergic imaging, here with the PET tracer 11C-HED, is effective at identifying patient at increased risk of life threatening arrhythmic events.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1–7.

    Article  Google Scholar 

  69. Matsui T, Tsutamoto T, Maeda K, et al. Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments—comparison with neurohumoral factors. Circ J. 2002;66:537–43.

    Article  PubMed  Google Scholar 

  70. Tracy CM, Epstein AE, Darbar D, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2012;60:1297–313.

    Article  PubMed  Google Scholar 

  71. Scholtens AM, Braat AJ, Tuinenburg A, et al. Cardiac sympathetic innervation and cardiac resynchronization therapy. Heart Fail Rev 2013 Jun 9.

  72. D’Orio Nishioka SA, Filho MM, Soares Brandāo SC, et al. Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol. 2007;14:852–9.

    Article  Google Scholar 

  73. Tanaka H, Tatsumi K, Fujiwara S, et al. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J. 2012;76:382–9.

    Article  PubMed  Google Scholar 

  74. Erol-Yilmaz A, Verberne HJ, Schrama TA, et al. Cardiac resynchronization induces favorable neurohumoral changes. Pacing Clin Electrophysiol. 2005;28:304–10.

    Article  PubMed  Google Scholar 

  75. Higuchi K, Toyama T, Tada H, et al. Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure. Circ J. 2006;70:703–9.

    Article  PubMed  Google Scholar 

  76. Gould PA, Kong G, Kalff V, et al. Improvement in cardiac adrenergic function post biventricular pacing for heart failure. Europace. 2007;9:751–6.

    Article  PubMed  Google Scholar 

  77. Miyagawa S, Sawa Y, Fukushima N, et al. Analysis of sympathetic nerve activity in end-stage cardiomyopathy patients receiving left ventricular support. J Heart Lung Transplant. 2001;20:1181–7.

    Article  CAS  PubMed  Google Scholar 

  78. Drakos SG, Athanasoulis T, Malliaras KG, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. J Am Coll Cardiol Img. 2010;3:64–70.

    Article  Google Scholar 

  79. George RS, Birks EJ, Cheetham A, et al. The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2013;15:1035–43. A small pilot study showing that 123I-mIBG imaging may help identify patents who are candidates for LVADs explantation.

    Article  CAS  PubMed  Google Scholar 

  80. Mancini D, Lietz K. Selection of cardiac transplantation candidates in 2010. Circulation. 2010;1222:173–83.

    Article  Google Scholar 

  81. O’Neill J, Young J, Pothier C, Lauer M. Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta blockers. Circulation. 2005;111:2313–8.

    Article  PubMed  Google Scholar 

  82. Aaronson K, Schwartz JS, Chen TM, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660–7.

    Article  CAS  PubMed  Google Scholar 

  83. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.

    Article  PubMed  Google Scholar 

  84. Cohen-Solal A, Esanu Y, Logeart D, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol. 1999;33:759–660.

    Article  CAS  PubMed  Google Scholar 

  85. Gerson MC, McGuire N, Wagoner LE. Sympathetic nervous system function as measured by I-123 metaiodobenzylguanidine predicts transplant-free survival in heart failure patients with idiopathic dilated cardiomyopathy. J Card Fail. 2003;9:384–91.

    Article  PubMed  Google Scholar 

  86. Ketchum ES, Jacobson AF, Caldwell JH, et al. Selective improvement in Seattle Heart Failure Model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007–16.

    Article  PubMed  Google Scholar 

  87. Verschure DO, Veltman CE, Manrique A, et al. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with chronic heart failure? Results of a pooled individual patient data meta-analysis. Eur Heart J Cardiovasc Imaging. 2014 Mar 30. Pooled prospectively acquired 123 I-mIBG data of 636 patients from 6 European and US sites showing the utility of imaging for predicting a variety of adverse cardiac events, but that planar HMR may be less useful for predicting arrhythmic events.

  88. Flotats A, Carrió I. Value of radionuclide studies in cardiac transplantation. Ann Nucl Med. 2006;20:13–21.

    Article  CAS  PubMed  Google Scholar 

  89. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  90. Estorch M, Campreciós M, Flotats A, et al. Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med. 1999;40:911–6.

    CAS  PubMed  Google Scholar 

  91. Bengel FM, Ueberfuhr P, Schiepel N, et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.

    Article  CAS  PubMed  Google Scholar 

  92. Gerson MC, Caldwell JH, Ananthasubramaniam K, et al. Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging. 2011;4:87–93. A study of about 1000 patients showing that in diabetic heart failure patients an HMR <1.6 is associated with an almost threefold increase in heart failure progression. Thus, therapies that prevent or ameliorate identified cardiac denervation in these patients may be a beneficial addition to therapies focused primarily on the diabetes.

    Article  PubMed  Google Scholar 

  93. Lee K-H, Jang H-J, Lee EJ, et al. Prognostic value of cardiac autonomic neuropathy independent and incremental to perfusion defects in patients with diabetes and suspected coronary artery disease. Am J Cardiol. 2003;92:1458–61.

    Article  PubMed  Google Scholar 

  94. Gerritsen J, Dekker JM, TenVoorde BJ, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 2001;24:1793–8.

    Article  CAS  PubMed  Google Scholar 

  95. Langer A, Freeman MR, Josse RG, et al. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol. 1995;25:610–8.

    Article  CAS  PubMed  Google Scholar 

  96. Hattori N, Tamaki N, Hayashi T, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med. 1996;37:1985–90.

    CAS  PubMed  Google Scholar 

  97. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes. Implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    Article  CAS  PubMed  Google Scholar 

  98. Sacre JW, Franjic B, Jellis CL, et al. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.

    Article  PubMed  Google Scholar 

  99. Nagamachi S, Fujita S, Nishii R, et al. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2006;13:34–42.

    Article  PubMed  Google Scholar 

  100. Paolillo S, Rengo G, Pagano G, et al. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care. 2013;36:2395–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mark I. Travin received grants and personal fees from GE Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Travin.

Additional information

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, M.I. Application of Cardiac Neurohormonal Imaging to Heart Failure, Transplantation, and Diabetes. Curr Cardiovasc Imaging Rep 8, 8 (2015). https://doi.org/10.1007/s12410-015-9323-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-015-9323-3

Keywords

Navigation