Skip to main content
Log in

Recent Developments in Small Animal Cardiovascular MRI

  • Molecular Imaging (G Strijkers, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

This review is intended to give a comprehensive overview over new cardiovascular magnetic resonance (CMR) method developments and refinements dedicated to the fully non-invasive in vivo exploration of the rodent heart. Unlike other cardiovascular imaging techniques, CMR techniques exist in many modalities giving access to parameters characterizing morphology, global and regional function, blood flow, myocardial structure, cell damage, metabolism and other molecular processes in mouse and rat models of human disease. But even in healthy animals, small animal CMR techniques can help exploring general physiological and biochemical mechanisms in vivo. New magnetic resonance imaging methods and imaging protocols are actively being developed by the entire CMR community with the goal of widening the spectrum of observable and measurable myocardial properties. This report also includes a selection of application studies using recent CMR methodology in this field. Beyond giving new insights into pathophysiologic processes, these studies underline the growing usefulness of CMR in a small animal research context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wagenhaus B, Pohlmann A, Dieringer MA, Els A, Waiczies H, Waiczies S, et al. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil. PLoS ONE. 2012;7:e42383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson. 2013;15:59. Detailed analysis and excellent image quality of mouse hearts and valves.

    Article  PubMed  Google Scholar 

  3. Coolen BF, Abdurrachim D, Motaal AG, Nicolay K, Prompers JJ, Strijkers GJ. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function. Magn Reson Med. 2013;69:648–56.

    Article  PubMed  Google Scholar 

  4. Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7T. Magn Reson Med. 2007;58:745–53.

    Article  PubMed  Google Scholar 

  5. Didié M, Biermann D, Buchert R, Hess A, Wittköpper K, Christalla P, et al. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am J Physiol Heart Circ Physiol. 2013;305:H533–41.

    Article  PubMed  Google Scholar 

  6. Wech T, Lemke A, Medway D, Stork L-A, Lygate CA, Neubauer S, et al. Accelerating cine-MR imaging in mouse hearts using compressed sensing. J Magn Reson Imaging. 2011;34:1072–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Motaal AG, Coolen BF, Abdurrachim D, Castro RM, Prompers JJ, Florack LMJ, et al. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction. NMR Biomed. 2012. doi:10.1002/nbm.2883.

    PubMed  Google Scholar 

  8. Young AA, Medway DJ, Lygate CA, Neubauer S, Schneider JE. Accelerating global left-ventricular function assessment in mice using reduced slice acquisition and three-dimensional guide-point modelling. J Cardiovasc Magn Reson. 2011;13:49.

    Article  PubMed  Google Scholar 

  9. Wise RG, Huang CL, Gresham GA, Al-Shafei AI, Carpenter TA, Hall LD. Magnetic resonance imaging analysis of left ventricular function in normal and spontaneously hypertensive rats. J Physiol Lond. 1998;513(Pt 3):873–87.

    Article  CAS  PubMed  Google Scholar 

  10. Van de Weijer T, van Ewijk PA, Zandbergen HR, Slenter JM, Kessels AG, Wildberger JE, et al. Geometrical models for cardiac MRI in rodents: comparison of quantification of left ventricular volumes and function by various geometrical models with a full-volume MRI data set in rodents. Am J Physiol Heart Circ Physiol. 2012;302:H709–15.

    Article  PubMed  Google Scholar 

  11. Kober F, Bernard M, Troalen T, Capron T. Cardiovascular magnetic resonance of myocardial structure, function, and perfusion in mouse and rat models. Curr Cardiovasc Imaging Rep. 2012;5:109–15.

    Article  Google Scholar 

  12. Haggerty CM, Kramer SP, Binkley CM, Powell DK, Mattingly AC, Charnigo R, et al. Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice. J Cardiovasc Magn Reson. 2013;15:71.

    Article  PubMed  Google Scholar 

  13. Zhong X, Gibberman LB, Spottiswoode BS, Gilliam AD, Meyer CH, French BA, et al. Comprehensive cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE. J Cardiovasc Magn Reson. 2011;13:83. Excellent data quality and detailed analysis of regional function.

    Article  PubMed  Google Scholar 

  14. Dall’Armellina E, Jung BA, Lygate CA, Neubauer S, Markl M, Schneider JE. Improved method for quantification of regional cardiac function in mice using phase-contrast MRI. Magn Reson Med. 2012;67:541–51.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Espe EK, Aronsen JM, Skårdal K, Schneider JE, Zhang L, Sjaastad I. Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:82. First use of phase-contrast MRI to calculate strains.

    Article  PubMed  Google Scholar 

  16. Vandsburger MH, French BA, Kramer CM, Zhong X, Epstein FH. Displacement-encoded and manganese-enhanced cardiac MRI reveal that nNOS, not eNOS, plays a dominant role in modulating contraction and calcium influx in the mammalian heart. Am J Physiol Heart Circ Physiol. 2012;302:H412–9. Multi-modal CMR responding to a question in fundamental physiology.

    Article  CAS  PubMed  Google Scholar 

  17. Jung B, Odening KE, Dall’Armellina E, Föll D, Menza M, Markl M, et al. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson. 2012;14:87.

    Article  PubMed  Google Scholar 

  18. Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R, et al. First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med. 2010;64:1592–8.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med. 2009;62:706–16.

    Article  PubMed  Google Scholar 

  20. Jogiya R, Makowski M, Phinikaridou A, Patel AS, Jansen C, Zarinabad N, et al. Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. J Cardiovasc Magn Reson. 2013;15:62. Validation of 1 st pass perfusion CMR against microspheres.

    Article  PubMed  Google Scholar 

  21. Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ. Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med. 2010;64:1658–63.

    Article  PubMed  Google Scholar 

  22. Van Nierop BJ, Coolen BF, Dijk WJR, Hendriks AD, de Graaf L, Nicolay K, et al. Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med. 2013;69:1735–44. Accurate and detailed description of 1 st pass perfusion CMR experimentals, excellent data quality.

    Article  PubMed  Google Scholar 

  23. Stuckey DJ, Carr CA, Meader SJ, Tyler DJ, Cole MA, Clarke K. First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart. J Cardiovasc Magn Reson. 2011;13:38.

    Article  PubMed  Google Scholar 

  24. Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53:601–6.

    Article  PubMed  Google Scholar 

  25. Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, et al. Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated Look-Locker imaging with fuzzy C-means clustering. Magn Reson Med. 2010;63:648–57.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF. Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med. 2013;69:238–47.

    Article  PubMed  Google Scholar 

  27. Campbell-Washburn AE, Zhang H, Siow BM, Price AN, Lythgoe MF, Ordidge RJ, et al. Multislice cardiac arterial spin labeling using improved myocardial perfusion quantification with simultaneously measured blood pool input function. Magn Reson Med. 2013;70:1125–36.

    Article  Google Scholar 

  28. Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, et al. Myocardial perfusion quantification using the T1-based FAIR-ASL method: the influence of heart anatomy, cardiopulmonary blood flow and look–locker readout. Magn Reson Med. 2013. doi:10.1002/mrm.24843. Detailed analysis of error sources in Look-Locker FAIR perfusion measurements.

    PubMed  Google Scholar 

  29. Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part I. Experimental study. Magn Reson Med. 2013;70:1389–98. New Arterial Spin Labeling scheme shown feasible.

    Article  PubMed  Google Scholar 

  30. Capron T, Troalen T, Cozzone PJ, Bernard M, Kober F. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med. 2013;70:1399–408.

    Article  PubMed  Google Scholar 

  31. Abeykoon S, Sargent M, Wansapura JP. Quantitative myocardial perfusion in mice based on the signal intensity of flow sensitized CMR. J Cardiovasc Magn Reson. 2012;14:73.

    Article  PubMed  Google Scholar 

  32. Zun Z, Wong EC, Nayak KS. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn Reson Med. 2009;62:975–83.

    Article  PubMed  Google Scholar 

  33. Caudron J, Mulder P, Nicol L, Richard V, Thuillez C, Dacher J-N. MR relaxometry and perfusion of the myocardium in spontaneously hypertensive rat: correlation with histopathology and effect of anti-hypertensive therapy. Eur Radiol. 2013;23:1871–81.

    Article  PubMed  Google Scholar 

  34. Zhang H, Qiao H, Frank RS, Huang B, Propert KJ, Margulies S, et al. Spin-labeling magnetic resonance imaging detects increased myocardial blood flow after endothelial cell transplantation in the infarcted heart. Circ Cardiovasc Imaging. 2012;5:210–7.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Remy-Jouet I, et al. Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J Mol Cell Cardiol. 2012;52:660–6.

    Article  CAS  PubMed  Google Scholar 

  36. Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson. 1992;96:608–12. 1969.

    CAS  Google Scholar 

  37. Kahler E, Waller C, Rommel E, Hiller K, Voll S, Broich A, et al. Quantitative regional blood volume studies in rat myocardium in vivo. Magn Reson Med. 1998;40:517–25.

    Article  CAS  PubMed  Google Scholar 

  38. Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, et al. Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping. Circ Cardiovasc Imaging. 2011;4:636–40.

    Article  PubMed  Google Scholar 

  39. Coelho-Filho OR, Mongeon F-P, Mitchell R, Moreno Jr H, Nadruz Jr W, Kwong R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2013;6:134–41.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno Jr H, Simonson B, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications on early cardiac remodeling. Circulation. 2013. doi:10.1161/CIRCULATIONAHA.112.000438. Demonstration of feasibility of myocyte volume assessment.

    PubMed Central  Google Scholar 

  41. Li W, Griswold M, Yu X. Fast cardiac T1 mapping in mice using a model-based compressed sensing method. Magn Reson Med. 2012;68:1127–34.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Coolen BF, Geelen T, Paulis LE, Nauerth A, Nicolay K, Strijkers GJ. Three-dimensional T1 mapping of the mouse heart using variable flip angle steady-state MR imaging. NMR Biomed. 2011;24:154–62.

    Article  PubMed  Google Scholar 

  43. Coolen BF, Geelen T, Paulis LEM, Nicolay K, Strijkers GJ. Regional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping. J Cardiovasc Magn Reson. 2011;13:56.

    Article  PubMed  Google Scholar 

  44. Greally E, Davison BJ, Blain A, Laval S, Blamire A, Straub V, et al. Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy. J Cardiovasc Magn Reson. 2013;15:4.

    Article  PubMed  Google Scholar 

  45. Skårdal K, Rolim NPL, Haraldseth O, Goa PE, Thuen M. Late gadolinium enhancement in the assessment of the infarcted mouse heart: a longitudinal comparison with manganese-enhanced MRI. J Magn Reson Imaging. 2013. doi:10.1002/jmri.24127.

    PubMed  Google Scholar 

  46. Bun S-S, Kober F, Jacquier A, Espinosa L, Kalifa J, Bonzi M-F, et al. Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T. Invest Radiol. 2012;47:319–23.

    Article  PubMed  Google Scholar 

  47. Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, et al. T2 -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med. 2012;67:201–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Coolen BF, Simonis FFJ, Geelen T, Moonen RPM, Arslan F, Paulis LEM, et al. Quantitative T2 mapping of the mouse heart by segmented MLEV phase-cycled T2 preparation. Magn Reson Med. 2013. doi:10.1002/mrm.24952. Accurate and robust T2 mapping approach.

    Google Scholar 

  49. Aguor ENE, Arslan F, van de Kolk CWA, Nederhoff MGJ, Doevendans PA, van Echteld CJA, et al. Quantitative T 2* assessment of acute and chronic myocardial ischemia/reperfusion injury in mice. Magn Reson Mater Phy. 2012;25:369–79.

    Article  CAS  Google Scholar 

  50. Goergen CJ, Sosnovik DE. From molecules to myofibers: multiscale imaging of the myocardium. J Cardiovasc Transl Res. 2011;4:493–503. Excellent review including diffusion tensor imaging.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Hales PW, Burton RAB, Bollensdorff C, Mason F, Bishop M, Gavaghan D, et al. Progressive changes in T1, T2 and left-ventricular histo-architecture in the fixed and embedded rat heart. NMR Biomed. 2011;24:836–43.

    Article  PubMed  Google Scholar 

  52. Hales PW, Schneider JE, Burton RAB, Wright BJ, Bollensdorff C, Kohl P. Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol. 2012;110:319–30.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Healy LJ, Jiang Y, Hsu EW. Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:74.

    Article  PubMed  Google Scholar 

  54. Bakermans AJ, Geraedts TR, van Weeghel M, Denis S, João Ferraz M, Aerts JMFG, et al. Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function. Circ Cardiovasc Imaging. 2011;4:558–65. Carefully carried out proton spectroscopy experiment and excellent data quality.

    Article  PubMed  Google Scholar 

  55. Bakermans AJ, van Weeghel M, Denis S, Nicolay K, Prompers JJ, Houten SM. Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J Inherit Metab Dis. 2013. doi:10.1007/s10545-013-9604-4.

    PubMed  Google Scholar 

  56. Nagarajan V, Gopalan V, Kaneko M, Angeli V, Gluckman P, Richards AM, et al. Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy. Am J Physiol Heart Circ Physiol. 2013;304:H1495–504.

    Article  CAS  PubMed  Google Scholar 

  57. Lygate CA, Bohl S, ten Hove M, Faller KME, Ostrowski PJ, Zervou S, et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res. 2012;96:466–75.

    Article  CAS  PubMed  Google Scholar 

  58. Aguor ENE, van de Kolk CWA, Arslan F, Nederhoff MGJ, Doevendans PAFM, Pasterkamp G, et al. 23Na chemical shift imaging and Gd enhancement of myocardial edema. Int J Cardiovasc Imaging. 2013;29:343–54.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Tyler DJ. Cardiovascular applications of hyperpolarized MRI. Curr Cardiovasc Imaging Rep. 2011;4:108–15.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kohler SJ, Yen Y, Wolber J, Chen AP, Albers MJ, Bok R, et al. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate. Magn Reson Med. 2007;58:65–9.

    Article  CAS  PubMed  Google Scholar 

  61. Yen Y-F, Kohler SJ, Chen AP, Tropp J, Bok R, Wolber J, et al. Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized 13C-pyruvate. Magn Reson Med. 2009;62:1–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wiesinger F, Weidl E, Menzel MI, Janich MA, Khegai O, Glaser SJ, et al. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1–13C] pyruvate. Magn Reson Med. 2012;68:8–16. Innovative and very efficient carbon metabolite mapping.

    Article  CAS  PubMed  Google Scholar 

  63. Weiss K, Sigfridsson A, Wissmann L, Busch J, Batel M, Krajewski M, et al. Accelerating hyperpolarized metabolic imaging of the heart by exploiting spatiotemporal correlations. NMR Biomed. 2013. doi:10.1002/nbm.2963. Innovative and very efficient carbon metabolite mapping.

    PubMed Central  Google Scholar 

  64. Josan S, Hurd R, Park JM, Yen Y-F, Watkins R, Pfefferbaum A, et al. Dynamic metabolic imaging of hyperpolarized [2-(13) C] pyruvate using spiral chemical shift imaging with alternating spectral band excitation. Magn Reson Med. 2013. doi:10.1002/mrm.24871.

    PubMed  Google Scholar 

  65. Josan S, Park JM, Hurd R, Yen Y-F, Pfefferbaum A, Spielman D, et al. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-(13) C] and [2-(13) C] pyruvate. NMR Biomed. 2013. doi:10.1002/nbm.3003.

    Google Scholar 

  66. Mayer D, Yen Y-F, Josan S, Park JM, Pfefferbaum A, Hurd RE, et al. Application of hyperpolarized [1-13C] lactate for the in vivo investigation of cardiac metabolism. NMR Biomed. 2012;25:1119–24. Metabolic study of different states of the heart in vivo.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ball DR, Cruickshank R, Carr CA, Stuckey DJ, Lee P, Clarke K, et al. Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-(13) C] pyruvate. NMR Biomed. 2013. doi:10.1002/nbm.2972.

    PubMed  Google Scholar 

  68. Dodd MS, Ball DR, Schroeder MA, Le Page LM, Atherton HJ, Heather LC, et al. In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res. 2012;95:69–76.

    Article  CAS  PubMed  Google Scholar 

  69. Schroeder MA, Atherton HJ, Dodd MS, Lee P, Cochlin LE, Radda GK, et al. The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study. Circ Cardiovasc Imaging. 2012;5:201–9.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Winter P, Kampf T, Helluy X, Gutjahr FT, Meyer CB, Rommel E, et al. Fast retrospectively triggered local pulse-wave velocity measurements in mice with CMR-microscopy using a radial trajectory. J Cardiovasc Magn Reson. 2013;15:88. High-frame-rate aortic pulse wave velocity measurements.

    Article  PubMed  Google Scholar 

  71. Van Doormaal MA, Kazakidi A, Wylezinska M, Hunt A, Tremoleda JL, Protti A, et al. Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J R Soc Interface. 2012;9:2834–44.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Makowski MR, Varma G, Wiethoff AJ, Smith A, Mattock K, Jansen CHP, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4:295–303. Pre-scan-free positive contrast from a T2* contrast agent.

    Article  PubMed  Google Scholar 

  73. Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CHP, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17:383–8. A new MRI contrast agent targeting elastin.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Frank Kober, Thomas Troalen, and Monique Bernard declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kober.

Additional information

This article is part of the Topical Collection on Molecular Imaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kober, F., Troalen, T. & Bernard, M. Recent Developments in Small Animal Cardiovascular MRI. Curr Cardiovasc Imaging Rep 7, 9249 (2014). https://doi.org/10.1007/s12410-013-9249-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-013-9249-6

Keywords

Navigation