Skip to main content
Log in

New Developments in Hybrid Optical Coherence Tomographic Imaging: Current Status and Potential Implications in Clinical Practice and Research

  • Intravascular Imaging (U Landmesser, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a relatively new imaging technique that was introduced to overcome limitations of previous imaging modalities. OCT provides high resolution cross-sectional images of the coronaries which permit detailed evaluation of the luminal morphology and assessment of coronary artery pathology. These unique qualities render OCT a useful tool in clinical practice and research arena. However, apart from its significant advantages OCT imaging has also considerable limitations. To overcome the pitfalls of OCT, fusion of this modality with other imaging techniques has been proposed. Today several hybrid catheter and sophisticated data fusion methodologies have been developed for this purpose, which appear to provide a complete and comprehensive assessment of plaque characteristics and vessel pathophysiology. The aim of this review article is to describe the available OCT based hybrid imaging modalities, present the advantages and limitations of these approaches and discuss their potential value in clinical practice and research arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res. 1966;6:1–17.

    Article  Google Scholar 

  2. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127–34.

    Article  PubMed  CAS  Google Scholar 

  3. Davies MJ, Thomas AC. Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    Article  PubMed  CAS  Google Scholar 

  4. Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991;84:1087–99.

    Article  PubMed  CAS  Google Scholar 

  5. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging. 2011;4:894–901.

    Article  PubMed  Google Scholar 

  6. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  PubMed  CAS  Google Scholar 

  7. Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation. 2012;126:172–81.

    Article  PubMed  Google Scholar 

  8. Murray SW, Palmer ND. What is behind the calcium? The relationship between calcium and necrotic core on virtual histology analyses. Eur Heart J. 2009;30:125. author reply -6.

    Article  PubMed  Google Scholar 

  9. Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, et al. Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging. 2010;3:384–91.

    Article  PubMed  Google Scholar 

  10. Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8:823–9.

    Article  PubMed  Google Scholar 

  11. Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J. 2012;33:78–85.

    Article  PubMed  Google Scholar 

  12. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging. 2012;5:433–40.

    Article  PubMed  Google Scholar 

  13. Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93:1206–13.

    Article  PubMed  CAS  Google Scholar 

  14. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.

    Article  PubMed  Google Scholar 

  15. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.

    Article  PubMed  Google Scholar 

  16. Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, et al. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging. 2011;4:1022–39.

    Article  PubMed  Google Scholar 

  17. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1:752–61.

    Article  PubMed  Google Scholar 

  18. Schuurbiers JC, von Birgelen C, Wentzel JJ, Bom N, Serruys PW, et al. On the IVUS plaque volume error in coronary arteries when neglecting curvature. Ultrasound Med Biol. 2000;26:1403–11.

    Article  PubMed  CAS  Google Scholar 

  19. Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29:1136–46.

    Article  PubMed  Google Scholar 

  20. Goderie TP, van Soest G, Garcia-Garcia HM, Gonzalo N, Koljenovic S, et al. Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro. Int J Cardiovasc Imaging. 2010;26:843–50.

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, et al. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging. 2009;2:473–82.

    Article  PubMed  Google Scholar 

  22. Diletti R, Garcia-Garcia HM, Gomez-Lara J, Brugaletta S, Wykrzykowska JJ, et al. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. JACC Cardiovasc Imaging. 2011;4:774–80.

    Article  PubMed  Google Scholar 

  23. Kubo T, Maehara A, Mintz GS, Doi H, Tsujita K, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590–7.

    Article  PubMed  CAS  Google Scholar 

  24. Raber L. Biolimus-eluting stents with biodegredable polymer versus bare metal stents in acute myocardila infarction: two year clinical follow-up and results of serial multimodality imaging (OCT/IVUS). EuroPCR, Paris, France, May,. 2013.

  25. Yin J, Yang HC, Li X, Zhang J, Zhou Q, et al. Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt. 2010;15:010512.

    Article  PubMed  Google Scholar 

  26. Yang HC, Yin J, Hu C, Cannata J, Zhou Q, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:2839–43.

    Article  PubMed  Google Scholar 

  27. Li X, Yin J, Hu C, Zhou Q, Shung KK, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett. 2010;97:133702.

    Article  PubMed  Google Scholar 

  28. Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt. 2011;16:060505.

    Article  PubMed  Google Scholar 

  29. •• Li BH, Leung AS, Soong A, Munding CE, Lee H, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv. 2013;81:494–507. This study presented an updated hybrid OCT-IVUS catheter which appears to overcome limitations of previous designs.

  30. Jaffer FA, Calfon MA, Rosenthal A, Mallas G, Razansky RN, et al. Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol. 2011;57:2516–26.

    Article  PubMed  Google Scholar 

  31. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007;115:2292–8.

    Article  PubMed  CAS  Google Scholar 

  32. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, et al. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006;114:55–62.

    Article  PubMed  Google Scholar 

  33. Ryu SY, Choi HY, Na J, Choi ES, Lee BH. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber. Opt Lett. 2008;33:2347–9.

    Article  PubMed  Google Scholar 

  34. •• Yoo H, Kim JW, Shishkov M, Namati E, Morse T, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med. 2011;17:1680–4. This study presented the OCT/NIRF catheter and its ex vivo evaluation highlighting its value in research arena.

  35. Tu S, Holm NR, Koning G, Huang Z, Reiber JH. Fusion of 3D QCA and IVUS/OCT. Int J Cardiovasc Imaging. 2011;27:197–207.

    Article  PubMed  Google Scholar 

  36. Tu S, Pyxaras SA, Li Y, Barbato E, Reiber JH, et al. In vivo flow simulation at coronary bifurcation reconstructed by fusion of 3-dimensional X-ray angiography and optical coherence tomography. Circ Cardiovasc Interv. 2013;6:e15–7.

    Article  PubMed  Google Scholar 

  37. Bourantas CV, Papafaklis MI, Naka KK, Tsakanikas VD, Lysitsas DN, et al. Fusion of optical coherence tomography and coronary angiography - in vivo assessment of shear stress in plaque rupture. Int J Cardiol. 2012;155:e24–6.

    Article  PubMed  Google Scholar 

  38. Bourantas CV, Kalatzis FG, Papafaklis MI, Fotiadis DI, Tweddel AC, et al. ANGIOCARE: an automated system for fast three-dimensional coronary reconstruction by integrating angiographic and intracoronary ultrasound data. Catheter Cardiovasc Interv. 2008;72:166–75.

    Article  PubMed  Google Scholar 

  39. Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51:645–50.

    Article  PubMed  Google Scholar 

  40. Athanasiou LS, Bourantas CV, Siogkas PK, Sakellarios AI, Exarchos TP, et al. 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2647–50.

    PubMed  CAS  Google Scholar 

  41. Bourantas CV, Papafaklis MI, Athanasiou L, Kalatzis FG, Naka KK, et al. A new methodology for accurate 3-dimensional coronary artery reconstruction using routine intravascular ultrasound and angiographic data: implications for widespread assessment of endothelial shear stress in humans. EuroIntervention. 2013.

  42. Papafaklis MI, Bourantas CV, Yonetsu T, Kato K, Kotsia A, et al. Geometrically accurate three-dimensional coronary artery reconstruction using frequency-domain optical coherence tomography and angiographic data: new opportunities for in vivo endothelial shear stress assessment. JACC Cardiovasc Interv. 2013;6:S34.

    Article  Google Scholar 

  43. Bourantas CV, Papafaklis MI, Garcia-Garcia HM, Farooq V, Diletti R, et al. Short- and long-term implications of a bioresorbable vascular scaffold implantation on the local endothelial shear stress patterns JACC Cardiovasc Interv. 2013 in press.

  44. •• Bourantas CV, Papafaklis MI, Kotsia A, Farooq V, Diletti R, et al. Implications of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffolds Implantation: an optical coherence tomography study. JACC Cardiovasc Interv. 2013 in press. The first study that implemented OCT to reconstruct coronary anatomy and evaluate the effect of local hemodynamic patterns on neointimal proliferation.

  45. Papafaklis MI, Bourantas CV, Farooq V, Diletti R, Muramatsu T, et al. In vivo assessment of the three-dimensional haemodynamic micro-environment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: fusion of frequency domain optical coherence tomography and angiography. EuroIntervention. 2013.

  46. Cheng C, van Haperen R, de Waard M, van Damme LC, Tempel D, et al. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood. 2005;106:3691–8.

    Article  PubMed  CAS  Google Scholar 

  47. Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 2003;108:438–44.

    Article  PubMed  Google Scholar 

  48. Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, et al. Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb. 2003;10:304–13.

    Article  PubMed  CAS  Google Scholar 

  49. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Dimitrios Nikas, Dr. Christos V. Bourantas, Dr. Antonis I. Sakellarios, Dr. Aidonis Ramos, Dr. Katerina K. Naka, Dr. Lampros K. Michalis, and Dr. Patrick W. Serruys reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos V. Bourantas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikas, D., Bourantas, C.V., Sakellarios, A.I. et al. New Developments in Hybrid Optical Coherence Tomographic Imaging: Current Status and Potential Implications in Clinical Practice and Research. Curr Cardiovasc Imaging Rep 6, 411–420 (2013). https://doi.org/10.1007/s12410-013-9218-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9218-0

Keywords

Navigation