Skip to main content

Advertisement

Log in

Dual Energy CT of the Heart: Current Status and Future Applications

  • Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Several approaches in the past have aimed to combine anatomical and functional information about the myocardium in an effort to identify significant coronary artery disease and characterize ischemic heart disease. Recent developments in CT-technology have permitted the expansion of cardiac CT into new territories beyond coronary artery visualization. Introduction of dual-energy CT has demonstrated the ability to evaluate coronary anatomy, myocardial ischemia, and viability. It now appears possible to provide a comprehensive evaluation of ischemic heart disease through a single, stand-alone imaging modality. The presented review emphasizes the promising potential of cardiac dual-energy CT in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Zaret BL, Strauss HW, Martin ND, et al. Noninvasive regional myocardial perfusion with radioactive potassium. Study of patients at rest, with exercise and during angina pectoris. N Engl J Med. 1973;288(16):809–12.

    Article  PubMed  CAS  Google Scholar 

  2. Strauss HW, Harrison K, Langan JK, et al. Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation. 1975;51(4):641–5.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  4. Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol. 2008;43(2):112–9.

    Article  PubMed  Google Scholar 

  5. Schwarz F, Ruzsics B, Schoepf UJ, et al. Dua-energy CT of the heart–principles and protocols. Eur J Radiol. 2008;68:423–33.

    Article  PubMed  Google Scholar 

  6. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J. 2007;154(3):415–23.

    Article  PubMed  Google Scholar 

  7. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol. 1999;33(6):1756–824.

    Article  PubMed  CAS  Google Scholar 

  8. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55:173–85.

    Article  PubMed  Google Scholar 

  9. Ruzsics B, Lee H, Powers ER, et al. Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation. 2008;117:1244–5.

    Article  PubMed  Google Scholar 

  10. Gudmundsson P, Shahgaldi K, Winter R, et al. Parametric quantification of myocardial ischaemia using real-time perfusion adenosine stress echocardiography images, with SPECT as reference method. Clin Physiol Funct Imaging. 2010;30(1):30–42.

    Article  PubMed  CAS  Google Scholar 

  11. Berman DS, Kiat HS, Van Train KF, et al. Myocardial perfusion imaging with technetium-99 m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med. 1994;35(4):681–8.

    PubMed  CAS  Google Scholar 

  12. Tadehara F, Yamamoto H, Tsujiyama S, et al. Feasibility of a rapid protocol of 1-day single-isotope rest/adenosine stress Tc-99 m sestamibi ECG-gated myocardial perfusion imaging. J Nucl Cardiol. 2008;15(1):35–41.

    Article  PubMed  Google Scholar 

  13. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.

    Article  PubMed  CAS  Google Scholar 

  15. Kang DK, Schoepf UJ, Bastarrika G, et al. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.

    Article  PubMed  Google Scholar 

  16. Vliegenthart R, Pelgrim GJ, Ebersberger U, et al. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199(5 Suppl):S54–63.

    Article  PubMed  Google Scholar 

  17. Wang R, Yu W, Wang Y, et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.

    Article  PubMed  CAS  Google Scholar 

  18. Weininger M, Schoepf UJ, Ramachandra A, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81(12):3703–10.

    Article  PubMed  Google Scholar 

  19. Ko SM, Choi JW, Song MG, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.

    Article  PubMed  Google Scholar 

  20. •• Ko SM, Choi JW, Hwang HK, et al. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR. 2012;198:512–20. Combined results of adenosine stress dual energy CT and coronary CTA help to improve the prediction of hemodinamically significant coronary artery disease.

    Article  PubMed  Google Scholar 

  21. Ruzsics B, Schwarz F, Schoepf UJ, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104:318–26.

    Article  PubMed  Google Scholar 

  22. Baile EM, Pare PD, D'Yachkova Y, Carere RG. Effect of contrast media on coronary vascular resistance: contrast-induced coronary vasodilation. Chest. 1999;116:1039–45.

    Article  PubMed  CAS  Google Scholar 

  23. Gould RG, Lipton MJ, McNamara MT, et al. Measurement of regional myocardial blood flow in dogs by ultrafast CT. Invest Radiol. 1988;23:348–53.

    Article  PubMed  CAS  Google Scholar 

  24. Bell MR, Lerman LO, Rumberger JA. Validation of minimally invasive measurement of myocardial perfusion using electron beam computed tomography and application in human volunteers. Heart. 1999;81:628–35.

    PubMed  CAS  Google Scholar 

  25. Nikolaou K, Knez A, Sagmeister S, et al. Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr. 2004;28:286–92.

    Article  PubMed  Google Scholar 

  26. Rubinshtein R, Miller TD, Williamson EE, et al. Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart. 2009;95:1419–22.

    Article  PubMed  CAS  Google Scholar 

  27. McNamara MT, Higgins CB, Ehman RL, et al. Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA. Radiology. 1984;153(1):157–63.

    PubMed  CAS  Google Scholar 

  28. Jennings RB, Murry CE, Steenbergen CJ. Reimer KA Development of cell injury in sustained acute ischemia. Circulation. 1990;82(3 Suppl):II2–12.

    PubMed  CAS  Google Scholar 

  29. Jennings RB, Schaper J, Hill ML, et al. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res. 1985;56:262–78.

    Article  PubMed  CAS  Google Scholar 

  30. Gerber BL, Belge B, Legros GJ, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation. 2006;113:823–33.

    Article  PubMed  Google Scholar 

  31. Zhang LJ, Peng J, Wu SY, et al. Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model. Invest Radiol. 2010;45(6):290–7.

    PubMed  Google Scholar 

  32. Deseive S, Bauer RW, Lehmann R, et al. Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Invest Radiol. 2011;46(7):450–6.

    Article  PubMed  Google Scholar 

  33. Kerl JM, Deseive S, Tandi C, et al. Dual energy CT for the assessment of reperfused chronic infarction: a feasibility study in a porcine model. Acta Radiol. 2011;52:834–9.

    Article  PubMed  Google Scholar 

  34. Ruzsics B, Chiaramida SA, Schoepf UJ. Images in cardiology: dual-energy computed tomography imaging of myocardial infarction. Heart. 2009;95(3):180.

    Article  PubMed  CAS  Google Scholar 

  35. Bauer RW, Kerl JM, Fischer N, et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-T MRI. AJR. 2010;195:639–46.

    Article  PubMed  Google Scholar 

  36. Nance Jr JW, Bastarrika G, Kang DK, et al. High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011;35:119–25.

    Article  PubMed  Google Scholar 

  37. Kerl JM, Bauer RW, Maurer TB, et al. Dose levels at coronary CT angiography-a comparison of dual energy-, dual source- and 16-slice CT. Eur Radiol. 2011;21:530–7.

    Article  PubMed  Google Scholar 

  38. Schwarz F, Nance Jr JW, Ruzsics B, et al. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012;264(3):700–7.

    Article  PubMed  Google Scholar 

  39. Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Balazs Ruzsics declares no conflict of interest.

Lucas L. Geyer has served on speakers’ bureaus for GE Healthcare, Germany.

Justin R. Silverman declares no conflict of interest.

Aleksander W. Krazinski declares no conflict of interest.

U. Joseph Schoepf has been a consultant to Bayer, Bracco, GE, Medrad, and Siemens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Joseph Schoepf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzsics, B., Geyer, L.L., Silverman, J.R. et al. Dual Energy CT of the Heart: Current Status and Future Applications. Curr Cardiovasc Imaging Rep 6, 228–239 (2013). https://doi.org/10.1007/s12410-013-9197-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9197-1

Keywords

Navigation