Skip to main content
Log in

Noninvasive Assessment of Myocardial Dyssynchrony Prior to Cardiac Resynchronization Therapy

  • Cardiac Magnetic Resonance (E Nagel, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) has proven to be of benefit in patients with heart failure and evidence of dyssynchrony. QRS duration is the most widely applied measure of dyssynchrony but this is accepted to be an imperfect measure. There has been much focus on the use of imaging, particularly echocardiography, in identifying mechanical dyssynchrony but results from multi-center studies have proved disappointing. Cardiac magnetic resonance (CMR) imaging has inherent advantages over echocardiography in terms of image resolution and there have been several studies looking at the use of both simple and complex CMR measures as markers of dyssynchrony. In this review, we describe the advances in CMR assessment of dyssynchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  PubMed  CAS  Google Scholar 

  2. Mollema SA, Bleeker GB, van der Wall EE, Schalij MJ, Bax JJ. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. Am J Cardiol. 2007;100:1665–70.

    Article  PubMed  Google Scholar 

  3. Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol. 2003;91:684–8.

    Article  PubMed  Google Scholar 

  4. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834–40.

    Article  PubMed  Google Scholar 

  5. • Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.

    Article  PubMed  Google Scholar 

  6. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes 3rd NA, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2012;126:1784–800.

    Article  PubMed  Google Scholar 

  7. Daubert JC, Saxon L, Adamson PB, Auricchio A, Berger RD, Beshai JF, et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Europace. 2012;14:1236–86.

    Article  PubMed  Google Scholar 

  8. Sipahi I, Carrigan TP, Rowland DY, Stambler BS, Fang JC. Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Arch Intern Med. 2011;171:1454–62.

    Article  PubMed  Google Scholar 

  9. Bogaert JG, Bosmans HT, Rademakers FE, Bellon EP, Herregods MC, Verschakelen JA, et al. Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. MAGMA. 1995;3:5–12.

    Article  PubMed  CAS  Google Scholar 

  10. Bilchick KC, Dimaano V, Wu KC, Helm RH, Weiss RG, Lima JA, et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc imaging. 2008;1:561–8.

    Article  PubMed  Google Scholar 

  11. Chiribiri A, Kelle S, Gotze S, Kriatselis C, Thouet T, Tangcharoen T, et al. Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol. 2008;101:407–12.

    Article  PubMed  Google Scholar 

  12. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology. 1988;169:59–63.

    PubMed  CAS  Google Scholar 

  13. Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol. 2005;46:2223–8.

    Article  PubMed  Google Scholar 

  14. Matter C, Nagel E, Stuber M, Boesiger P, Hess OM. Assessment of systolic and diastolic LV function by MR myocardial tagging. Basic res cardiol. 1996;91 Suppl 2:23–8.

    Article  PubMed  Google Scholar 

  15. Han Y, Chan J, Haber I, Peters DC, Zimetbaum PJ, Manning WJ, et al. Circumferential myocardial strain in cardiomyopathy with and without left bundle branch block. J cardiovasc magn reson off j Soc Cardiovasc Magn Reson. 2010;12:2.

    Article  Google Scholar 

  16. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.

    Article  PubMed  Google Scholar 

  17. Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, et al. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J magn reson imaging JMRI. 2001;14:362–7.

    Article  CAS  Google Scholar 

  18. Koos R, Neizel M, Schummers G, Krombach GA, Stanzel S, Gunther RW, et al. Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection. J cardiovasc magn reson off j Soc Cardiovasc Magn Reson. 2008;10:49.

    Article  Google Scholar 

  19. •• Chalil S, Stegemann B, Muhyaldeen S, Khadjooi K, Smith RE, Jordan PJ, et al. Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol. 2007;50:243–52.

    Article  PubMed  Google Scholar 

  20. Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M, Monaghan MJ. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation. 2005;112:992–1000.

    Article  PubMed  CAS  Google Scholar 

  21. Kapetanakis S, Bhan A, Murgatroyd F, Kearney MT, Gall N, Zhang Q, et al. Real-time 3D echo in patient selection for cardiac resynchronization therapy. JACC Cardiovasc imaging. 2011;4:16–26.

    Article  PubMed  Google Scholar 

  22. Auricchio A, Fantoni C, Regoli F, Carbucicchio C, Goette A, Geller C, et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109:1133–9.

    Article  PubMed  Google Scholar 

  23. Fung JW, Chan JY, Yip GW, Chan HC, Chan WW, Zhang Q, et al. Effect of left ventricular endocardial activation pattern on echocardiographic and clinical response to cardiac resynchronization therapy. Heart. 2007;93:432–7.

    Article  PubMed  Google Scholar 

  24. Sohal M, Shetty A, Duckett SG, Chen Z, Sammut E, Amraoui S, et al. Non-invasive assessment of left ventricular contraction patterns using cardiac magnetic resonance imaging to identify responders to cardiac resynchronization therapy. JACC Cardiovasc imaging 2012; In press.

  25. Parsai C, Bijnens B, Sutherland GR, Baltabaeva A, Claus P, Marciniak M, et al. Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur Hear J. 2009;30:940–9.

    Article  Google Scholar 

  26. De Boeck BW, Teske AJ, Meine M, Leenders GE, Cramer MJ, Prinzen FW, et al. Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response. Eur J Hear Fail. 2009;11:863–71.

    Article  Google Scholar 

  27. Kirn B, Jansen A, Bracke F, van Gelder B, Arts T, Prinzen FW. Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. Am J Physiol Heart Circ Physiol. 2008;295:H640–6.

    Article  PubMed  CAS  Google Scholar 

  28. Sohal M, Shetty A, Duckett S, Chen Z, Bostock J, Ma Y, et al. Assessing septal flash using cardiac magnetic resonance imaging and its association with response to CRTHeart Rhythm Society Annual Scientific Sessions. Boston, USA: 2012.

  29. Fornwalt BK, Gonzales PC, Delfino JG, Eisner R, Leon AR, Oshinski JN. Quantification of left ventricular internal flow from cardiac magnetic resonance images in patients with dyssynchronous heart failure. J magn reson imaging JMRI. 2008;28:375–81.

    Article  Google Scholar 

  30. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171:841–5.

    PubMed  CAS  Google Scholar 

  31. Zwanenburg JJ, Gotte MJ, Kuijer JP, Heethaar RM, van Rossum AC, Marcus JT. Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset and late peak of shortening in lateral wall. Am J Physiol Heart Circ Physiol. 2004;286:H1872–80.

    Article  PubMed  CAS  Google Scholar 

  32. Fischer SE, McKinnon GC, Maier SE, Boesiger P. Improved myocardial tagging contrast. Magn reson med off j Soc Magn Reson Med/ Soc Magn Reson Med. 1993;30:191–200.

    Article  CAS  Google Scholar 

  33. Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol. 2000;45:1665–82.

    Article  PubMed  CAS  Google Scholar 

  34. Garot J, Bluemke DA, Osman NF, Rochitte CE, McVeigh ER, Zerhouni EA, et al. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation. 2000;101:981–8.

    Article  PubMed  CAS  Google Scholar 

  35. Sampath S, Derbyshire JA, Atalar E, Osman NF, Prince JL. Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse sequence. Magn reson med off j Soc Magn Reson Med/ Soc Magn Reson Med. 2003;50:154–63.

    Article  Google Scholar 

  36. Sampath S, Prince JL. Automatic 3D tracking of cardiac material markers using slice-following and harmonic-phase MRI. Magn reson imaging. 2007;25:197–208.

    Article  PubMed  Google Scholar 

  37. Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, et al. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation. 2005;111:2760–7.

    Article  PubMed  Google Scholar 

  38. Helm RH, Byrne M, Helm PA, Daya SK, Osman NF, Tunin R, et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation. 2007;115:953–61.

    Article  PubMed  Google Scholar 

  39. Leclercq C, Faris O, Tunin R, Johnson J, Kato R, Evans F, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation. 2002;106:1760–3.

    Article  PubMed  Google Scholar 

  40. Kvitting JP, Ebbers T, Engvall J, Sutherland GR, Wranne B, Wigstrom L. Three-directional myocardial motion assessed using 3D phase contrast MRI. J cardiovasc magn reson off j Soc Cardiovasc Magn Reson. 2004;6:627–36.

    Article  Google Scholar 

  41. Delfino JG, Johnson KR, Eisner RL, Eder S, Leon AR, Oshinski JN. Three-directional myocardial phase-contrast tissue velocity MR imaging with navigator-echo gating: in vivo and in vitro study. Radiology. 2008;246:917–25.

    Article  PubMed  Google Scholar 

  42. Westenberg JJ, Lamb HJ, van der Geest RJ, Bleeker GB, Holman ER, Schalij MJ, et al. Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy: head-to-head comparison between tissue doppler imaging and velocity-encoded magnetic resonance imaging. J Am Coll Cardiol. 2006;47:2042–8.

    Article  PubMed  Google Scholar 

  43. Altiok E, Neizel M, Tiemann S, Krass V, Kuhr K, Becker M, et al. Quantitative analysis of endocardial and epicardial left ventricular myocardial deformation-comparison of strain-encoded cardiac magnetic resonance imaging with two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr off publ Am Soc Echocardiogr. 2012;25:1179–88.

    Article  Google Scholar 

  44. Osman NF, Sampath S, Atalar E, Prince JL. Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn reson med off j Soc Magn Reson Med/ Soc Magn Reson Med. 2001;46:324–34.

    Article  CAS  Google Scholar 

  45. Pan L, Stuber M, Kraitchman DL, Fritzges DL, Gilson WD, Osman NF. Real-time imaging of regional myocardial function using fast-SENC. Magn reson med off j Soc Magn Reson Med/ Soc Magn Reson Med. 2006;55:386–95.

    Article  Google Scholar 

  46. Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230:862–71.

    Article  PubMed  Google Scholar 

  47. Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH. Motion-guided segmentation for cine DENSE MRI. Med image anal. 2009;13:105–15.

    Article  PubMed  Google Scholar 

  48. Budge LP, Helms AS, Salerno M, Kramer CM, Epstein FH, Bilchick KC. MR cine DENSE dyssynchrony parameters for the evaluation of heart failure: comparison with myocardial tissue tagging. JACC Cardiovasc imaging. 2012;5:789–97.

    Article  PubMed  Google Scholar 

  49. Caruthers SD, Lin SJ, Brown P, Watkins MP, Williams TA, Lehr KA, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108:2236–43.

    Article  PubMed  Google Scholar 

  50. Beerbaum P, Korperich H, Gieseke J, Barth P, Peuster M, Meyer H. Rapid left-to-right shunt quantification in children by phase-contrast magnetic resonance imaging combined with sensitivity encoding (SENSE). Circulation. 2003;108:1355–61.

    Article  PubMed  Google Scholar 

  51. Muellerleile K, Baholli L, Groth M, Barmeyer AA, Koopmann K, Ventura R, et al. Interventricular mechanical dyssynchrony: quantification with velocity-encoded MR imaging. Radiology. 2009;253:364–71.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Manav Sohal declares no conflict of interest; Sana Amraoui declares no conflict of interest; C. Aldo Rinaldi declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manav Sohal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohal, M., Amraoui, S. & Rinaldi, C.A. Noninvasive Assessment of Myocardial Dyssynchrony Prior to Cardiac Resynchronization Therapy. Curr Cardiovasc Imaging Rep 6, 140–149 (2013). https://doi.org/10.1007/s12410-013-9192-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9192-6

Keywords

Navigation