Skip to main content

Advertisement

Log in

Oxygenation and Flow in the Limbs: Novel Methods to Characterize Peripheral Artery Disease

  • Cardiac Magnetic Resonance (E Nagel, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Peripheral artery disease (PAD) affects approximately 8 million Americans and is associated with high morbidity and increased mortality. Current therapies for PAD are limited and development of new therapeutic agents is needed. Present diagnostic methods for PAD are insensitive to the subtle microvascular and metabolic changes that occur beyond macrovacular stenosis and therefore may be less useful endpoints for clinical trials. Phosphorus-31 magnetic resonance (MR) spectroscopy, MR muscle perfusion, and MR oximetry are novel methods capable of evaluating both the macrovascular and microvascular changes that occur in PAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125:188–97.

    Article  PubMed  Google Scholar 

  2. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation. 2004;110:738–43.

    Article  PubMed  Google Scholar 

  3. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–24.

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–654.

    Article  PubMed  Google Scholar 

  5. Heald CL, Fowkes FG, Murray GD, Price JF, Ankle Brachial Index Collaboration. Risk of mortality and cardiovascular disease associated with the ankle-brachial index: systematic review. Atherosclerosis. 2006;189:61–9.

    Article  PubMed  CAS  Google Scholar 

  6. Criqui MH, Ninomiya JK, Wingard DL, Ji M, Fronek A. Progression of peripheral arterial disease predicts cardiovascular disease morbidity and mortality. J Am Coll Cardiol. 2008;52:1736–42.

    Article  PubMed  Google Scholar 

  7. Faxon DP, Fuster V, Libby P, et al. Atherosclerotic vascular disease conference: writing group III: pathophysiology. Circulation. 2004;109:2617–25.

    Article  PubMed  Google Scholar 

  8. Rose GA, Blackburn H. Cardiovascular survey methods. Monogr Ser World Health Organ. 1968;56:1–188.

    PubMed  CAS  Google Scholar 

  9. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: the Rotterdam study. Arterioscler Thromb Vasc Biol. 1998;18:185–92.

    Article  PubMed  CAS  Google Scholar 

  10. Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71:510–5.

    Article  PubMed  CAS  Google Scholar 

  11. Hiatt WR, Hoag S, Hamman RF. Effect of diagnostic criteria on the prevalence of peripheral arterial disease. The San Luis Valley Diabetes Study. Circulation. 1995;91:1472–9.

    Article  PubMed  CAS  Google Scholar 

  12. Regensteiner JG, Hiatt WR, Coll JR, et al. The impact of peripheral arterial disease on health-related quality of life in the peripheral arterial disease awareness, risk, and treatment: new resources for survival (PARTNERS) program. Vasc Med. 2008;13:15–24.

    Article  PubMed  Google Scholar 

  13. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. J Vasc Surg. 2000;31:944–52.

    Article  PubMed  CAS  Google Scholar 

  14. Chance B. Applications of 31P NMR to clinical biochemistry. Ann N Y Acad Sci. 1984;428:318–32.

    Article  PubMed  CAS  Google Scholar 

  15. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981;211:448–52.

    Article  PubMed  CAS  Google Scholar 

  16. Roussel M, Bendahan D, Mattei JP, Le Fur Y, Cozzone PJ. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta. 2000;1457:18–26.

    Article  PubMed  CAS  Google Scholar 

  17. van der Grond J, Crolla RM, Ten Hove W, van Vroonhoven TJ, Mali WP. Phosphorus magnetic resonance spectroscopy of the calf muscle in patients with peripheral arterial occlusive disease. Invest Radiol. 1993;28:104–8.

    Article  PubMed  Google Scholar 

  18. Isbell DC, Berr SS, Toledano AY, et al. Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. J Am Coll Cardiol. 2006;47:2289–95.

    Article  PubMed  CAS  Google Scholar 

  19. Greiner A, Esterhammer R, Messner H, et al. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg. 2006;43:978–86.

    Article  PubMed  Google Scholar 

  20. Schocke MF, Esterhammer R, Ostermann S, et al. High-energy phosphate metabolism during calf ergometry in patients with isolated aorto-iliac artery stenoses. Invest Radiol. 2006;41:874–82.

    Article  PubMed  CAS  Google Scholar 

  21. Esterhammer R, Schocke M, Gorny O, et al. Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise. Mol Imaging Biol. 2008;10:30–9.

    Article  PubMed  Google Scholar 

  22. Raynaud JS, Duteil S, Vaughan JT, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med. 2001;46:305–11.

    Article  PubMed  CAS  Google Scholar 

  23. Epstein FH, London JF, Peters DC, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med. 2002;47:482–91.

    Article  PubMed  Google Scholar 

  24. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med. 1993;29:485–97.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson RB, Aviles RJ, Faranesh AZ, et al. Measurement of skeletal muscle perfusion during postischemic reactive hyperemia using contrast-enhanced MRI with a step-input function. Magn Reson Med. 2005;54:289–98.

    Article  PubMed  Google Scholar 

  26. Isbell DC, Epstein FH, Zhong X, et al. Calf muscle perfusion at peak exercise in peripheral arterial disease: measurement by first-pass contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2007;25:1013–20.

    Article  PubMed  Google Scholar 

  27. Jiji RS, Pollak AW, Epstein FH, et al. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease. J Cardiovasc Magn Reson. 2013;15:14.

    Google Scholar 

  28. •• Wu WC, Mohler 3rd E, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009;53:2372–7. This study demonstrated the utility of continuous ASL for the assessment of PAD.

    Article  PubMed  Google Scholar 

  29. •• Pollak A, Meyer C, Epstein F, et al. Arterial spin labeling MRI reproducibly measures peak-exercise calf muscle perfusion in healthy volunteers and patients with peripheral arterial disease. J Am Coll Cardiol. 2012;5(12):1224–30. doi:10.1016/j.jcmg.2012.03.022. This study demonstrates the utility of pulsed ASL for the assessment of PAD.

    Google Scholar 

  30. • Jacobi B, Bongartz G, Partovi S, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging. 2012;35:1253–65. Good review of BOLD MRI.

    Article  PubMed  Google Scholar 

  31. Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging. 1998;16:721–9.

    Article  PubMed  CAS  Google Scholar 

  32. Duteil S, Wary C, Raynaud JS, et al. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med. 2006;55:450–4.

    Article  PubMed  CAS  Google Scholar 

  33. Ledermann HP, Schulte AC, Heidecker HG, et al. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006;113:2929–35.

    Article  PubMed  Google Scholar 

  34. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.

    Article  PubMed  CAS  Google Scholar 

  35. Robbins JL, Jones WS, Duscha BD, et al. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol. 2011;111:81–6.

    Article  PubMed  Google Scholar 

  36. Versluis B, Backes WH, van Eupen MG, et al. Magnetic resonance imaging in peripheral arterial disease: reproducibility of the assessment of morphological and functional vascular status. Invest Radiol. 2011;46:11–24.

    Article  PubMed  Google Scholar 

  37. Wright GA, Hu BS, Macovski A. I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1:275–83.

    Article  PubMed  CAS  Google Scholar 

  38. Chien D, Levin DL, Anderson CM. MR gradient echo imaging of intravascular blood oxygenation: T2* determination in the presence of flow. Magn Reson Med. 1994;32:540–5.

    Article  PubMed  CAS  Google Scholar 

  39. Haacke EM, Lai S, Reichenbach JR, et al. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997;5:341–6.

    Article  PubMed  CAS  Google Scholar 

  40. Abramson DI, Tuck Jr S, Bell Y, Mitchell RE, Zayas AM. Effect of short periods of arterial occlusion on blood flow and oxygen uptake. J Appl Physiol. 1961;16:851–7.

    PubMed  CAS  Google Scholar 

  41. •• Langham MC, Floyd TF, Mohler 3rd ER, Magland JF, Wehrli FW. Evaluation of cuff-induced ischemia in the lower extremity by magnetic resonance oximetry. J Am Coll Cardiol. 2010;55:598–606. This study demonstrated the feasibility of SWI oximetry for the assessment of PAD.

    Article  PubMed  Google Scholar 

  42. Langham MC, Magland JF, Epstein CL, Floyd TF, Wehrli FW. Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels. Magn Reson Med. 2009;62:333–40.

    Article  PubMed  CAS  Google Scholar 

  43. Yang L, Krefting I, Gorovets A, et al. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology. 2012;265:248–53.

    Article  PubMed  Google Scholar 

  44. • Anderson JD, Epstein FH, Meyer CH, et al. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–35. This study established the lack of association between muscle metabolism and perfusion.

    Article  PubMed  Google Scholar 

  45. • West AM, Anderson JD, Epstein FH, et al. Percutaneous intervention in peripheral artery disease improves calf muscle phosphocreatine recovery kinetics: a pilot study. Vasc Med. 2012;17:3–9. This study showed that PCr recovery can detect therapeutic changes after PTI in a small cohort of patients.

    Article  PubMed  Google Scholar 

  46. West AM, Anderson JD, Epstein FH, et al. Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease. J Am Coll Cardiol. 2011;58:1068–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH R01 HL075792 (CMK) and 5T32EB003841 (DL).

Disclosure

Dr. Kramer receives research support from Siemens Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, D., Kramer, C.M. Oxygenation and Flow in the Limbs: Novel Methods to Characterize Peripheral Artery Disease. Curr Cardiovasc Imaging Rep 6, 150–157 (2013). https://doi.org/10.1007/s12410-013-9191-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9191-7

Keywords

Navigation