Skip to main content

Advertisement

Log in

Cardiac PET/MRI

  • Technological Advances in Cardiac Multi-modality Imaging (TH Schindler, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2013

Abstract

The last decade saw an impressive increase in clinical utilization of hybrid imaging devices such as PET/CT and SPECT/CT, which enhanced the diagnostic quality of many examinations in nuclear medicine. Taking this concept to the integration of PET and MRI was a major technical challenge. Prior to this first generation of whole body scanners, preclinical and brain-only research systems were developed. Accordingly, clinical application is still in its infancy and many potential applications are currently in the proof of principle state. This holds true also for cardiac imaging and thus this review summarizes the core strengths of the individual modality, points to the areas where a synergetic effect is expected and presents initial experience with such a device. However, the additional value and potential clinical role with cardiac hybrid PET/MR imaging have yet to be documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwaiger M, Ziegler S, Nekolla SG. Pet/ct: challenge for nuclear cardiology. J Nucl Med Soc Nucl Med. 2005;46:1664–78.

    Google Scholar 

  2. Kajander S, Ukkonen H, Sipila H, Teras M, Knuuti J. Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid pet/ct scanner. Clin Physiol Funct Imaging. 2009;29:81–8.

    PubMed  CAS  Google Scholar 

  3. Souvatzoglou M, Bengel F, Busch R, Kruschke C, Fernolendt H, Lee D, et al. Attenuation correction in cardiac pet/ct with three different ct protocols: a comparison with conventional pet. Eur J Nucl Med Mol Imaging. 2007;34:1991–2000.

    PubMed  Google Scholar 

  4. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body pet/mri: evaluation with pet/ct data. J Nucl Med Soc Nucl Med. 2009;50:520–6.

    Google Scholar 

  5. Antoch G, Bockisch A. Combined pet/mri: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S113–20.

    PubMed  Google Scholar 

  6. Nekolla SG, Martinez-Moeller A, Saraste A. Pet and mri in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S121–30.

    PubMed  Google Scholar 

  7. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body ingenuity tf pet-mri system. Phys Med Biol. 2011;56:3091–106.

    PubMed  CAS  Google Scholar 

  8. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the siemens mmr integrated whole-body pet/mr scanner. J Nucl Med Soc Nucl Med. 2011;52:1914–22.

    Google Scholar 

  9. Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative pet/mri: a review of mr-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S93–S104.

    PubMed  Google Scholar 

  10. Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned ct in cardiac perfusion pet/ct studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48:188–93.

    PubMed  Google Scholar 

  11. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac pet/ct due to misregistration of ct attenuation and emission pet images: a definitive analysis of causes, consequences, and corrections. J Nucl Med Soc Nucl Med. 2007;48:1112–21.

    Google Scholar 

  12. Huang SC, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE. A boundary method for attenuation correction in positron computed tomography. J Nucl Med Soc Nucl Med. 1981;22:627–37.

    CAS  Google Scholar 

  13. Coombs BD, Szumowski J, Coshow W. Two-point dixon technique for water-fat signal decomposition with b0 inhomogeneity correction. Mag Res Med Soc Mag Res Med. 1997;38:884–9.

    CAS  Google Scholar 

  14. Steinberg J, Jia G, Sammet S, Zhang J, Hall N, Knopp MV. Three-region mri-based whole-body attenuation correction for automated pet reconstruction. Nucl Med Biol. 2010;37:227–35.

    PubMed  CAS  Google Scholar 

  15. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, mr-based attenuation correction for whole-body pet/mr data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    PubMed  CAS  Google Scholar 

  16. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. Pet/mr imaging of bone lesions–implications for pet quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.

    PubMed  Google Scholar 

  17. Fürst S, Souvatzoglu M, Rischpler C, Ziegler S, Schwaiger M, Nekolla S. Effects of mr contrast agents on attenuation map generation and cardiac pet quantification in pet/mr. J Nucl Med. 2012;53 Suppl 1:139.

    Google Scholar 

  18. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. Mri-based attenuation correction for pet/mri: a novel approach combining pattern recognition and atlas registration. J Nucl Med Soc Nucl Med. 2008;49:1875–83.

    Google Scholar 

  19. Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T. Mr-based attenuation correction for hybrid pet-mr brain imaging systems using deformable image registration. Med Phys. 2010;37:2101–9.

    PubMed  Google Scholar 

  20. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. Mri-based attenuation correction for whole-body pet/mri: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med Soc Nucl Med. 2011;52:1392–9.

    Google Scholar 

  21. Censor Y, Gustafson D, Lent A, Tuy H. A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci. 1979;26:2275–9.

    Google Scholar 

  22. Nuyts J, Dupont P, Stroobants S, Bennick R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18(5):393–403.

    PubMed  CAS  Google Scholar 

  23. Nuyts J, Michel C, Fenchel M, Bal G, Watson C. Completion of a truncated attenuation image from the attenuated pet emission data. IEEE Nucl Sci Symp Conf Record (NSS/MIC) 2010; 2123–7.

  24. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited mr field of view in mr/pet attenuation correction. Med Phys. 2010;37:2804–12.

    PubMed  Google Scholar 

  25. Blumhagen JO, Ladebeck R, Fenchel M, Scheffler K. Mr-based field-of-view extension in mr/pet: B(0) homogenization using gradient enhancement (huge). Mag Res Med Soc Mag Res Med. 2012. doi:10.1002/mrm.24555.

  26. Delso G, Martinez-Moller A, Bundschuh RA, Ladebeck R, Candidus Y, Faul D, et al. Evaluation of the attenuation properties of mr equipment for its use in a whole-body pet/mr scanner. Phys Med Biol. 2010;55:4361–74.

    PubMed  CAS  Google Scholar 

  27. MacDonald LR, Kohlmyer S, Liu C, Lewellen TK, Kinahan PE. Effects of mr surface coils on pet quantification. Med Phys. 2011;38:2948–56.

    PubMed  Google Scholar 

  28. Tellmann L, Quick HH, Bockisch A, Herzog H, Beyer T. The effect of mr surface coils on pet quantification in whole-body pet/mr: results from a pseudo-pet/mr phantom study. Med Phys. 2011;38:2795–805.

    PubMed  CAS  Google Scholar 

  29. Brogsitter C, Gruning T, Weise R, Wielepp P, Lindner O, Korfer R, et al. 18f-fdg pet for detecting myocardial viability: validation of 3d data acquisition. J Nucl Med Soc Nucl Med. 2005;46:19–24.

    Google Scholar 

  30. Knesaurek K, Machac J, Krynyckyi BR, Almeida OD. Comparison of 2-dimensional and 3-dimensional 82rb myocardial perfusion pet imaging. J Nucl Med Soc Nucl Med. 2003;44:1350–6.

    Google Scholar 

  31. Knesaurek K, Machac J, Ho KJ. Comparison of 2d, 3d high dose and 3d low dose gated myocardial 82rb pet imaging. BMC Nucl Med. 2007;7:4.

    PubMed  Google Scholar 

  32. Lekx KS, deKemp RA, Beanlands RS, Wisenberg G, Wells RG, Stodilka RZ, et al. Quantification of regional myocardial blood flow in a canine model of stunned and infarcted myocardium: comparison of rubidium-82 positron emission tomography with microspheres. Nuc Med Commun. 2010;31:67–74.

    CAS  Google Scholar 

  33. Schepis T, Gaemperli O, Treyer V, Valenta I, Burger C, Koepfli P, et al. Absolute quantification of myocardial blood flow with 13n-ammonia and 3-dimensional pet. J Nucl Med Soc Nucl Med. 2007;48:1783–9.

    CAS  Google Scholar 

  34. DiFilippo FP, Brunken RC. Do implanted pacemaker leads and icd leads cause metal-related artifact in cardiac pet/ct? J Nucl Med. 2005;46:436–43.

    PubMed  Google Scholar 

  35. Cohen JD, Costa HS, Russo RJ. Determining the risks of magnetic resonance imaging at 1.5 tesla for patients with pacemakers and implantable cardioverter defibrillators. Am J Cardiol. 2012;110:1631–6.

    PubMed  Google Scholar 

  36. Marinskis G, Bongiorni MG, Dagres N, Dobreanu D, Lewalter T, Blomstrom-Lundqvist C. Performing magnetic resonance imaging in patients with implantable pacemakers and defibrillators: results of a european heart rhythm association survey. Europace Eur Soc Cardiol. 2012;14:1807–9.

    Google Scholar 

  37. Henneman MM, van der Wall EE, Ypenburg C, Bleeker GB, van de Veire NR, Marsan NA, et al. Nuclear imaging in cardiac resynchronization therapy. J Nucl Med Soc Nucl Med. 2007;48:2001–10.

    Google Scholar 

  38. Uebleis C, Ulbrich M, Tegtmeyer R, Schuessler F, Haserueck N, Siebermair J, et al. Electrocardiogram-gated 18f-fdg pet/ct hybrid imaging in patients with unsatisfactory response to cardiac resynchronization therapy: initial clinical results. J Nucl Med Soc Nucl Med. 2011;52:67–71.

    Google Scholar 

  39. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    PubMed  CAS  Google Scholar 

  40. Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med Soc Nucl Med. 2007;48:1135–46.

    Google Scholar 

  41. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31:2984–95.

    PubMed  Google Scholar 

  42. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    PubMed  Google Scholar 

  43. vom Dahl J, Eitzman DT, al-Aouar ZR, Kanter HL, Hicks RJ, Deeb GM, et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994;90:2356–66.

    Google Scholar 

  44. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  45. Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, et al. The influence of myocardial blood flow and volume of distribution on late gd-dtpa kinetics in ischemic heart failure. J Magn Reson Imaging. 2004;20:588–93.

    PubMed  Google Scholar 

  46. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Mag Res. 2007;9:653–8.

    Google Scholar 

  47. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–7.

    PubMed  Google Scholar 

  48. Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.

    PubMed  Google Scholar 

  49. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced mri and routine single photon emission computed tomography (spect) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374–9.

    PubMed  Google Scholar 

  50. Schmidt M, Voth E, Schneider CA, Theissen P, Wagner R, Baer FM, et al. F-18-fdg uptake is a reliable predictory of functional recovery of akinetic but viable infarct regions as defined by magnetic resonance imaging before and after revascularization. Magn Reson Imaging. 2004;22:229–36.

    PubMed  Google Scholar 

  51. Gerber BL, Rochitte CE, Bluemke DA, Melin JA, Crosille P, Becker LC, et al. Relation between gd-dtpa contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation. 2001;104:998–1004.

    PubMed  CAS  Google Scholar 

  52. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. Acc/aha/asnc guidelines for the clinical use of cardiac radionuclide imaging--executive summary: a report of the american college of cardiology/american heart association task force on practice guidelines (acc/aha/asnc committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). J Am Coll Cardiol. 2003;42:1318–33.

    PubMed  Google Scholar 

  53. Fukushima K, Javadi MS, Higuchi T, Lautamaki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82rb pet perfusion imaging. J Nucl Med. 2011;52:726–32.

    PubMed  Google Scholar 

  54. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48:1029–39.

    PubMed  Google Scholar 

  55. Merhige ME, Breen WJ, Shelton V, Houston T, D'Arcy BJ, Perna AF. Impact of myocardial perfusion imaging with pet and (82)rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med Soc Nucl Med. 2007;48:1069–76.

    Google Scholar 

  56. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    PubMed  Google Scholar 

  57. Flotats A, Bravo PE, Fukushima K, Chaudhry MA, Merrill J, Bengel FM. (82)rb pet myocardial perfusion imaging is superior to (99m)tc-labelled agent spect in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2012;39(8):1233–9. doi:10.1007/s00259-012-2140-x.

    PubMed  Google Scholar 

  58. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ecg-gated rb-82 myocardial perfusion pet: comparison with ecg-gated tc-99 m sestamibi spect. J Nucl Cardiol. 2006;13:24–33.

    PubMed  Google Scholar 

  59. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–5.

    PubMed  CAS  Google Scholar 

  60. Ibrahim T, Nekolla SG, Schreiber K, Odaka K, Volz S, Mehilli J, et al. Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol. 2002;39:864–70.

    PubMed  Google Scholar 

  61. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60:1546–55.

    PubMed  Google Scholar 

  62. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-dtpa in patients with coronary artery disease. J Am Coll Cardiol. 1991;18:959–65.

    PubMed  CAS  Google Scholar 

  63. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50:1343–53.

    PubMed  Google Scholar 

  64. de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95. doi:10.1007/s00330-012-2434-1.

    PubMed  Google Scholar 

  65. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 pet quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.

    PubMed  CAS  Google Scholar 

  66. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)o-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84.

    PubMed  Google Scholar 

  67. Schwaiger M, Melin J. Cardiological applications of nuclear medicine. Lancet. 1999;354:661–6.

    PubMed  CAS  Google Scholar 

  68. Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2010;12:57.

    Google Scholar 

  69. Zierler K. Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng. 2000;28:836–48.

    PubMed  CAS  Google Scholar 

  70. Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Mag Res. 2011;13:28.

    Google Scholar 

  71. Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic pet. J Nucl Med Soc Nucl Med. 1993;34:488–97.

    CAS  Google Scholar 

  72. McCommis KS, Zhang H, Herrero P, Gropler RJ, Zheng J. Feasibility study of myocardial perfusion and oxygenation by noncontrast mri: comparison with pet study in a canine model. Magn Reson Imaging. 2008;26:11–9.

    PubMed  Google Scholar 

  73. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Mag Res. 2000;2:271–8.

    CAS  Google Scholar 

  74. Boyd HL, Gunn RN, Marinho NVS, Karwatowski SP, Bailey DL, Costa DC, et al. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med. 1996;23:1594–602.

    PubMed  CAS  Google Scholar 

  75. Rajappan K, Livieratos L, Camici PG, Pennell DJ. Measurement of ventricular volumes and function: a comparison of gated pet and cardiovascular magnetic resonance. J Nucl Med. 2002;43:806–10.

    PubMed  Google Scholar 

  76. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac ct angiography. JAMA J Am Med Assoc. 2009;301:500–7.

    CAS  Google Scholar 

  77. Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol. 2006;13:19–23.

    PubMed  Google Scholar 

  78. Fink C, Krissak R, Henzler T, Lechel U, Brix G, Takx RA, et al. Radiation dose at coronary ct angiography: second-generation dual-source ct versus single-source 64-mdct and first-generation dual-source ct. AJR Am J Roentgenol. 2011;196:W550–7.

    PubMed  Google Scholar 

  79. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.

    PubMed  CAS  Google Scholar 

  80. Yoon YE, Kitagawa K, Kato S, Ishida M, Nakajima H, Kurita T, et al. Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol. 2012;60(22):2316–22. doi:10.1016/j.jacc.2012.07.060.

    PubMed  Google Scholar 

  81. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.

    PubMed  CAS  Google Scholar 

  82. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation. 2002;106:296–9.

    PubMed  Google Scholar 

  83. Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC. Cardiovasc Imaging. 2009;2:580–8.

    Google Scholar 

  84. Haubner R, Beer AJ, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S86–S103.

    PubMed  Google Scholar 

  85. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18f]galacto-rgd. PLoS Med. 2005;2:e70.

    PubMed  Google Scholar 

  86. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.

    PubMed  CAS  Google Scholar 

  87. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med. 1998;4:623–6.

    PubMed  CAS  Google Scholar 

  88. Holloway C, Clarke K. Is mr spectroscopy of the heart ready for humans? Heart Lung Circ. 2010;19:154–60.

    PubMed  CAS  Google Scholar 

  89. Bottomley PA, Weiss RG. Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet. 1998;351:714–8.

    PubMed  CAS  Google Scholar 

  90. Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D'Ambrosia G, Arbique D, Vongpatanasin W, et al. Myocardial triglycerides and systolic function in humans: In vivo evaluation by localized proton spectroscopy and cardiac imaging. Mag Res Med Soc Mag Res Med. 2003;49:417–23.

    CAS  Google Scholar 

  91. Jansen MA, Van Emous JG, Nederhoff MG, Van Echteld CJ. Assessment of myocardial viability by intracellular 23na magnetic resonance imaging. Circulation. 2004;110:3457–64.

    PubMed  CAS  Google Scholar 

  92. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Mag Res Med Soc Mag Res Med. 2005;54:1377–86.

    Google Scholar 

  93. Sosnovik DE, Wang R, Dai G, Wang T, Aikawa E, Novikov M, et al. Diffusion spectrum mri tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circ Cardiovasc Imaging. 2009;2:206–12.

    PubMed  Google Scholar 

  94. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body pet/mr: comparison to pet/ct in patients with oncologic diagnoses. J Nucl Med Soc Nucl Med. 2012;53:845–55.

    Google Scholar 

  95. Eiber M, Souvatzoglou M, Pickhard A, Loeffelbein DJ, Knopf A, Holzapfel K, et al. Simulation of a mr-pet protocol for staging of head-and-neck cancer including dixon mr for attenuation correction. Eur J Radiol. 2012;81:2658–65.

    PubMed  Google Scholar 

  96. Martinez-Moller A, Eiber M, Nekolla SG, Souvatzoglou M, Drzezga A, Ziegler S, et al. Workflow and scan protocol considerations for integrated whole-body pet/mri in oncology. J Nucl Med Soc Nucl Med. 2012;53:1415–26.

    Google Scholar 

  97. Adluru G, Chen L, Kim SE, Burgon N, Kholmovski EG, Marrouche NF, et al. Three-dimensional late gadolinium enhancement imaging of the left atrium with a hybrid radial acquisition and compressed sensing. JMRI. 2011;34:1465–71.

    PubMed  Google Scholar 

  98. Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, et al. Unsupervised inline analysis of cardiac perfusion mri. Medical image computing and computer-assisted intervention: MICCAI …. Int Conf Med Image Comput Computer-Assisted Interv. 2009;12:741–9.

    Google Scholar 

  99. Reeps C, Bundschuh RA, Pellisek J, Herz M, van Marwick S, Schwaiger M, Eckstein HH, Nekolla SG, Essler M. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int J Cardiovasc Imaging. 2012;Jul 7. [Epub ahead of print].

  100. Lautamaki R, Schuleri KH, Sasano T, Javadi MS, Youssef A, Merrill J, et al. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: evaluation in a porcine model of myocardial infarction. Circ Cardiovasc Imaging. 2009;2:299–305.

    PubMed  Google Scholar 

Download references

Acknowledgments

Many team members supported this review, but we would like to thank especially Sebastian Fürst, Isabel Dregely, Shelley Zhang for her valuable input, Sylvia Schachoff and Gitti Dzewas for their technical and logistical assistance during PET/MR acquisitions.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan G. Nekolla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekolla, S.G., Rischpler, C., Batrice, A. et al. Cardiac PET/MRI. Curr Cardiovasc Imaging Rep 6, 158–168 (2013). https://doi.org/10.1007/s12410-013-9190-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9190-8

Keywords

Navigation