Skip to main content

Advertisement

Log in

Cardiac PET-CT and CT Angiography

  • Technological Advances in Cardiac Multi-modality Imaging (TH Schindler, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Today coronary artery disease (CAD) is widely understood to constitute an advanced stage of atherosclerosis, an inflammatory pathology involving both coronary and extracoronary arteries. It is increasingly appreciated that perfusion imaging brings additional prognostic value as compared to morphological imaging alone, where myocardial perfusion abnormalities can be understood as the functional consequence of a broad range of present atherosclerotic vessel alterations, baring considerable significance for the diagnostic and prognostic work-up of CAD. Using recently introduced PET/CT hybrid scanners, the favorable characteristics of PET perfusion imaging and quantification can be further strengthened by adding CT morphological information, both components contributing to a comprehensive view on the heart and enabling combined morphological and functional imaging including three dimensional image fusion. Thus, cardiac PET/CT can provide both a reliable allocation of perfusion abnormalities to their supplying coronary artery and improved individual risk stratification for further clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Weintraub HS. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol. 2008;101:3F–10F.

    Article  PubMed  Google Scholar 

  2. Lindsay AC, Choudhury RP. Form to function: current and future roles for atherosclerosis imaging in drug development. Nat Rev Drug Discov. 2008;7:517–29.

    Article  PubMed  CAS  Google Scholar 

  3. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108:1772–8.

    Article  PubMed  Google Scholar 

  4. Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina–summary article: a report of the american college of cardiology/american heart association task force on practice guidelines (committee on the management of patients with chronic stable angina). Circulation. 2003;107:149–58.

    Article  PubMed  Google Scholar 

  5. Bugiardini R, Manfrini O, Pizzi C, et al. Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms. Circulation. 2004;109:2518–23.

    Article  PubMed  Google Scholar 

  6. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, et al. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36:103–9.

    Article  PubMed  CAS  Google Scholar 

  7. Pirich C, Leber A, Knez A, et al. Relation of coronary vasoreactivity and coronary calcification in asymptomatic subjects with a family history of premature coronary artery disease. Eur J Nucl Med Mol Imaging. 2004;31:663–70. Epub 2004 Jan 22.

    Article  PubMed  Google Scholar 

  8. Hacker M, Jakobs T, Hack N, et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging. 2007;34:4–10.

    Article  PubMed  Google Scholar 

  9. Iskandrian AS, Chae SC, Heo J, et al. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol. 1993;22:665–70.

    Article  PubMed  CAS  Google Scholar 

  10. •• Bengel FM, Higuchi T, Javadi MS, et al. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15. Basic overview focusing on the technical principles, diagnostic accuracy and risk stratification of cardiac PET..

    Article  PubMed  Google Scholar 

  11. Parker MW, Iskandar A, Limone B, et al.: Diagnostic Accuracy of Cardiac Positron Emission Tomography versus Single Photon Emission Computed Tomography for Coronary Artery Disease: A Bivariate Meta-Analysis. Circ Cardiovasc Imaging. 2012.

  12. Nekolla SG, Reder S, Saraste A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18 F-BMS-747158-02: comparison to 13 N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119:2333–42.

    Article  PubMed  CAS  Google Scholar 

  13. Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J Nucl Cardiol. 2012;19 Suppl 1:S38–45.

    Article  PubMed  Google Scholar 

  14. Arad Y, Goodman KJ, Roth M, et al. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis heart study. J Am Coll Cardiol. 2005;46:158–65.

    Article  PubMed  CAS  Google Scholar 

  15. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107:2571–6.

    Article  PubMed  Google Scholar 

  16. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation. 2000;101:850–5.

    Article  PubMed  CAS  Google Scholar 

  17. Shaw LJ, Raggi P, Schisterman E, et al. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228:826–33.

    Article  PubMed  Google Scholar 

  18. Taylor AJ, Bindeman J, Feuerstein I, et al. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the prospective army coronary calcium (PACC) project. J Am Coll Cardiol. 2005;46:807–14.

    Article  PubMed  CAS  Google Scholar 

  19. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–62.

    Article  PubMed  CAS  Google Scholar 

  20. Achenbach S, Raggi P. Imaging of coronary atherosclerosis by computed tomography. Eur Heart J. 2010;31:1442–8.

    Article  PubMed  Google Scholar 

  21. Haberl R, Becker A, Leber A, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol. 2001;37:451–7.

    Article  PubMed  CAS  Google Scholar 

  22. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  23. Burkhard N, Herzog BA, Husmann L, et al. Coronary calcium score scans for attenuation correction of quantitative PET/CT 13 N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:517–21.

    Article  PubMed  Google Scholar 

  24. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  25. Gaemperli O, Schepis T, Koepfli P, et al. Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2007;34:1162–71.

    Article  PubMed  Google Scholar 

  26. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.

    Article  PubMed  Google Scholar 

  27. Rist C, Johnson TR, Becker CR, et al. New applications for noninvasive cardiac imaging: dual-source computed tomography. Eur Radiol. 2007;17 Suppl 6:F16–25.

    PubMed  Google Scholar 

  28. Stolzmann P, Scheffel H, Trindade PT, et al. Left ventricular and left atrial dimensions and volumes: comparison between dual-source CT and echocardiography. Invest Radiol. 2008;43:284–9.

    Article  PubMed  Google Scholar 

  29. Lell MM, Panknin C, Saleh R, et al. Evaluation of coronary stents and stenoses at different heart rates with dual source spiral CT (DSCT). Invest Radiol. 2007;42:536–41.

    Article  PubMed  Google Scholar 

  30. Scheffel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol. 2006;16:2739–47.

    Article  PubMed  Google Scholar 

  31. Johnson TR, Nikolaou K, Busch S, et al. Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol. 2007;42:684–91.

    Article  PubMed  Google Scholar 

  32. Weustink AC, Meijboom WB, Mollet NR, et al. Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol. 2007;50:786–94.

    Article  PubMed  Google Scholar 

  33. Leber AW, Johnson T, Becker A, et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28:2354–60.

    Article  PubMed  Google Scholar 

  34. Pugliese F, Hunink MG, Gruszczynska K, et al. Learning curve for coronary CT angiography: what constitutes sufficient training? Radiology. 2009;251:359–68.

    Article  PubMed  Google Scholar 

  35. Dey D, Lee CJ, Ohba M, et al. Image quality and artifacts in coronary CT angiography with dual-source CT: initial clinical experience. J Cardiovasc Comput Tomogr. 2008;2:105–14.

    Article  PubMed  Google Scholar 

  36. Wintersperger BJ, Nikolaou K, von Ziegler F, et al. Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol. 2006;41:436–42.

    Article  PubMed  Google Scholar 

  37. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  38. Hoffmann MH, Shi H, Schmitz BL, et al. Noninvasive coronary angiography with multislice computed tomography. Jama. 2005;293:2471–8.

    Article  PubMed  CAS  Google Scholar 

  39. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J. 2005;26:1482–7.

    Article  PubMed  Google Scholar 

  40. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the american college of cardiology foundation appropriate Use criteria task force, the society of cardiovascular computed tomography, the american college of radiology, the american heart association, the american society of echocardiography, the american society of nuclear cardiology, the north american society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  41. Knuuti J, Kajander S, Maki M, et al. Quantification of myocardial blood flow will reform the detection of CAD. J Nucl Cardiol. 2009;16:497–506.

    Article  PubMed  Google Scholar 

  42. Kajander SA, Joutsiniemi E, Saraste M, et al.: Clinical Value of Absolute Quantification of Myocardial Perfusion with 15O-water in Coronary Artery Disease. Circ Cardiovasc Imaging. 2011.

  43. Bergmann SR, Fox KA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.

    Article  PubMed  CAS  Google Scholar 

  44. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med. 1990;31:1899–905.

    PubMed  CAS  Google Scholar 

  45. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991;67:1303–10.

    Article  PubMed  CAS  Google Scholar 

  46. Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99 m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  47. Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48:1029–39.

    Article  PubMed  Google Scholar 

  48. Dorbala S, Hachamovitch R, Curillova Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2:846–54.

    Article  PubMed  Google Scholar 

  49. Namdar M, Hany TF, Koepfli P, et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med. 2005;46:930–5.

    PubMed  Google Scholar 

  50. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  PubMed  CAS  Google Scholar 

  51. Tonino PA, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    Article  PubMed  Google Scholar 

  52. Forster S, Rieber J, Ubleis C, et al. Tc-99 m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve. Int J Cardiovasc Imaging. 2010;26:203–13.

    Article  PubMed  Google Scholar 

  53. Gaemperli O, Schepis T, Kalff V, et al. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging. 2007;34:1097–106.

    Article  PubMed  Google Scholar 

  54. Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:200–6.

    Article  PubMed  Google Scholar 

  55. Schepis T, Gaemperli O, Koepfli P, et al. Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2007;34:11–9.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Hacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacker, M. Cardiac PET-CT and CT Angiography. Curr Cardiovasc Imaging Rep 6, 191–196 (2013). https://doi.org/10.1007/s12410-012-9184-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9184-y

Keywords

Navigation