Skip to main content
Log in

Three-Dimensional Fourier-Domain Optical Coherence Tomography Imaging: Advantages and Future Development

  • Intravascular Imaging (U Landmesser, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Traditionally, intravascular imaging methods display the coronary anatomy in two dimensions, through a series of consecutive cross-sectional tomographic images. The physician is then required to mentally reassemble these images in order to visualize the vascular anatomy and all its complex interactions. The ability to depict the vascular structure with its actual spatial appearance, in three dimensions, is a powerful way to provide an easy, objective, and comprehensive overview of its complex and dynamic anatomy. However, three-dimensional (3D) application of intravascular imaging has been plagued by lack of enough resolution, frequent presence of imaging and motion artifacts and need for extensive image post-processing. Fourier-Domain OCT (FD-OCT) allows high-resolution (10–15 μm) visualization of the intracoronary environment with faster pullback speeds and image acquisition rates in comparison to IVUS and the previous generation time-domain OCT. These features have recently attracted attention to the potential of FD-OCT in generating high-quality 3D images of intravascular anatomies, with lesser artifacts. The present manuscript discusses the current status and some potential clinical applications of 3D FD-OCT imaging. Some technical aspects, limitations, and future perspectives are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Reid DB, Douglas M, Diethrich EB. The clinical value of three-dimensional intravascular ultrasound imaging. J Endovasc Surg. 1995;2(4):356–64.

    Article  PubMed  CAS  Google Scholar 

  2. Box LC, Angiolillo DJ, Suzuki N, Box LA, Jiang J, Guzman L, et al. Heterogeneity of atherosclerotic plaque characteristics in human coronary artery disease: a three-dimensional intravascular ultrasound study. Catheter Cardiovasc Interv. 2007;70(3):349–56.

    Article  PubMed  Google Scholar 

  3. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1(6):752–61. First report on the application of 3D FD-OCT in human coronary arteries.

    Article  PubMed  Google Scholar 

  4. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Google Scholar 

  5. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.

    Article  PubMed  Google Scholar 

  6. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152(4):755 e751–754.

    Article  Google Scholar 

  7. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50(10):933–9.

    Article  PubMed  Google Scholar 

  8. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011.

  9. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.

    Article  PubMed  Google Scholar 

  10. Tahara S, Morooka T, Wang Z, Bezerra HG, Rollins AM, Simon DI, et al. intravascular optical coherence tomography detection of atherosclerosis and inflammation in murine aorta. Arterioscler Thromb Vasc Biol. 2012.

  11. • Chamie D, Wang Z, Bezerra H, Rollins AM, Costa MA. Optical coherence tomography and fibrous cap characterization. Curr Cardiovasc Imaging Rep. 2011;4(4):276–83. Comprehensive review on the use of FD-OCT for the assessment of fibrous cap over lipid-rich plaques. Current limitations for fibrous cap quantification by OCT are discussed. The authors propose a new volumetric method for fibrous cap assessment based on its 3D morphometric features.

    Article  PubMed  Google Scholar 

  12. • Bezerra HG, Attizzani GF, Costa MA. Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography. Catheter Cardiovasc Interv. 2011. Demonstration of 3D FD-OCT use for a more comprehensive evaluation of lipid plaque vulnerability. The authors capitalize on the FD-OCT properties to quantify not only the fibrous cap thickness, but also assess its 3D morphological features, such as area and circumferential distribution.

  13. Wang Z, Chamie D, Bezerra HG, Kanowsky J, Yamamoto H, Costa M, et al. Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed Opt Express. 2012;accepted.

  14. Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  15. Henneke KH, Regar E, Konig A, Werner F, Klauss V, Metz J, et al. Impact of target lesion calcification on coronary stent expansion after rotational atherectomy. Am Heart J. 1999;137(1):93–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chuang YC, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91(7):1959–65.

    Article  PubMed  CAS  Google Scholar 

  17. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.

    Article  PubMed  Google Scholar 

  18. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.

    Article  PubMed  Google Scholar 

  19. Wang Z, Kyono H, Bezerra HG, Wang H, Gargesha M, Alraies C, et al. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. J Biomed Opt. 2010;15(6):061711.

    Article  PubMed  Google Scholar 

  20. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  21. Tahara S, Bezerra HG, Baibars M, Kyono H, Wang W, Pokras S, et al. In vitro validation of new Fourier-domain optical coherence tomography. EuroIntervention. 2011;6(7):875–82.

    Article  PubMed  Google Scholar 

  22. Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, et al. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv. 2008;72(2):228–35.

    Article  PubMed  Google Scholar 

  23. Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, et al. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and Validation. Catheter Cardiovasc Interv. 2009;74(7):1058–65.

    Article  PubMed  Google Scholar 

  24. Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Med Phys. 2012;39(1):503–13.

    Article  PubMed  Google Scholar 

  25. Latib A, Colombo A. Bifurcation disease: what do we know, what should we do? JACC Cardiovasc Interv. 2008;1(3):218–26.

    Article  PubMed  Google Scholar 

  26. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA. 2005;293(17):2126–30.

    Article  PubMed  CAS  Google Scholar 

  27. Steigen TK, Maeng M, Wiseth R, Erglis A, Kumsars I, Narbute I, et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation. 2006;114(18):1955–61.

    Article  PubMed  Google Scholar 

  28. Ferenc M, Gick M, Kienzle RP, Bestehorn HP, Werner KD, Comberg T, et al. Randomized trial on routine vs. provisional T-stenting in the treatment of de novo coronary bifurcation lesions. Eur Heart J. 2008;29(23):2859–67.

    Article  PubMed  Google Scholar 

  29. Stankovic G, Darremont O, Ferenc M, Hildick-Smith D, Louvard Y, Albiero R, et al. Percutaneous coronary intervention for bifurcation lesions: 2008 consensus document from the fourth meeting of the European Bifurcation Club. EuroIntervention. 2009;5(1):39–49.

    Article  PubMed  Google Scholar 

  30. Dzavik V, Kharbanda R, Ivanov J, Ing DJ, Bui S, Mackie K, et al. Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle. Am Heart J. 2006;152(4):762–9.

    Article  PubMed  Google Scholar 

  31. Gil RJ, Vassilev D, Formuszewicz R, Rusicka-Piekarz T, Doganov A. The carina angle-new geometrical parameter associated with periprocedural side branch compromise and the long-term results in coronary bifurcation lesions with main vessel stenting only. J Interv Cardiol. 2009;22(6):E1–E10.

    Article  PubMed  Google Scholar 

  32. Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located? Circ Cardiovasc Interv. 2010;3(2):105–12.

    Article  PubMed  Google Scholar 

  33. Suarez de Lezo J, Medina A, Martin P, Novoa J, Pan M, Caballero E, et al. Predictors of ostial side branch damage during provisional stenting of coronary bifurcation lesions not involving the side branch origin: an ultrasonographic study. EuroIntervention. 2012;7(10):1147–54.

    Article  PubMed  Google Scholar 

  34. Okamura T, Onuma Y, Garcia-Garcia HM, Regar E, Wykrzykowska JJ, Koolen J, et al. 3-dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds a proposal for classification. JACC Cardiovasc Interv. 2010;3(8):836–44.

    Article  PubMed  Google Scholar 

  35. • Farooq V, Serruys PW, Heo JH, Gogas BD, Okamura T, Gomez-Lara J, et al. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging. JACC Cardiovasc Interv. 2011;4(8):921–31. The authors raise hypotheses related to the types of coronary bifurcation based on their 3D FD-OCT appearances and discuss their potential to influence PCI results.

    Article  PubMed  Google Scholar 

  36. Ormiston JA, Webster MW, El Jack S, Ruygrok PN, Stewart JT, Scott D, et al. Drug-eluting stents for coronary bifurcations: bench testing of provisional side-branch strategies. Catheter Cardiovasc Interv. 2006;67(1):49–55.

    Article  PubMed  Google Scholar 

  37. Di Mario C, Iakovou I, van der Giessen WJ, Foin N, Adrianssens T, Tyczynski P, et al. Optical coherence tomography for guidance in bifurcation lesion treatment. EuroIntervention. 2010;6(Suppl J):J99–J106.

    Article  PubMed  Google Scholar 

  38. Okamura T, Yamada J, Nao T, Suetomi T, Maeda T, Shiraishi K, et al. Three-dimensional optical coherence tomography assessment of coronary wire re-crossing position during bifurcation stenting. EuroIntervention. 2011;7(7):886–7.

    Article  PubMed  Google Scholar 

  39. Fujii K, Mintz GS, Kobayashi Y, Carlier SG, Takebayashi H, Yasuda T, et al. Contribution of stent underexpansion to recurrence after sirolimus-eluting stent implantation for in-stent restenosis. Circulation. 2004;109(9):1085–8.

    Article  PubMed  Google Scholar 

  40. Hong MK, Mintz GS, Lee CW, Park DW, Choi BR, Park KH, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006;27(11):1305–10.

    Article  PubMed  Google Scholar 

  41. Fujii K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37(5):1478–92.

    Article  PubMed  CAS  Google Scholar 

  43. Aoki J, Nakazawa G, Tanabe K, Hoye A, Yamamoto H, Nakayama T, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2007;69(3):380–6.

    Article  PubMed  Google Scholar 

  44. Popma JJ, Tiroch K, Almonacid A, Cohen S, Kandzari DE, Leon MB. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am J Cardiol. 2009;103(7):923–9.

    Article  PubMed  Google Scholar 

  45. Yamada KP, Koizumi T, Yamaguchi H, Kaneda H, Bonneau HN, Honda Y, et al. Serial angiographic and intravascular ultrasound analysis of late stent strut fracture of sirolimus-eluting stents in native coronary arteries. Int J Cardiol. 2008;130(2):255–9.

    Article  PubMed  Google Scholar 

  46. Barlis P, Sianos G, Ferrante G, Del Furia F, D’Souza S, Di Mario C. The use of intra-coronary optical coherence tomography for the assessment of sirolimus-eluting stent fracture. Int J Cardiol. 2009;136(1):e16–20.

    Article  PubMed  Google Scholar 

  47. Nakano M, Vorpahl M, Otsuka F, Virmani R. Optical frequency domain imaging of stent fracture and coronary dissection associated with intraplaque hemorrhage. JACC Cardiovasc Interv. 2011;4(9):1047–8.

    Article  PubMed  Google Scholar 

  48. Okamura T, Matsuzaki M. Sirolimus-eluting stent fracture detection by three-dimensional optical coherence tomography. Catheter Cardiovasc Interv. 2012;79(4):628–32.

    Article  PubMed  Google Scholar 

  49. Wang Z, Kyono H, Bezerra H, Wilson W, Costa M, Rollins A. Automatic segmentation of intravascular optical coherence tomography images for facilitating quantitative diagnosis of atherosclerosis. Proc SPIE 2011;7889, 78890N:7889–7822.

    Google Scholar 

  50. Unal G, Gurmeric S, Carlier SG. Stent implant follow-up in intravascular optical coherence tomography images. Int J Cardiovasc Imaging. 2010;26(7):809–16.

    Article  PubMed  Google Scholar 

  51. Wang Z, Jenkins M, Bezerra H, Costa M, Wilson D, Rollins A. Single-shot stent segmentation in intravascular OCT pullbacks. In: Biomedical Optics OTD, ed. Optical Society of America; 2012:BTu4B.5.

  52. Nguyen MS, Salvado O, Roy D, Steyer G, Stone ME, Hoffman RD, et al. Ex vivo characterization of human atherosclerotic iliac plaque components using cryo-imaging. J Microsc. 2008;232(3):432–41.

    Article  PubMed  CAS  Google Scholar 

  53. • Farooq V, Gogas BD, Okamura T, Heo JH, Magro M, Gomez-Lara J, et al. Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application. Eur Heart J. 2011. Important overview of the current status and potential clinical applications of 3D FD-OCT imaging. Comprehensive discussion regarding the occurrence of imaging artifacts with the use of current OCT systems is provided.

  54. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express. 2010;18(14):14685–704.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Some of the projects described in this manuscript were supported by National Heart, Lung, and Blood Institute through NIH R21HL108263 and by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through grant UL1RR024989. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Disclosure

D. Chamié: none; D. Prabhu: none; Z. Wang: none; H. Bezerra: LightLab/St. Jude Medical (consulting fee/honorarium)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamié, D., Prabhu, D., Wang, Z. et al. Three-Dimensional Fourier-Domain Optical Coherence Tomography Imaging: Advantages and Future Development. Curr Cardiovasc Imaging Rep 5, 221–230 (2012). https://doi.org/10.1007/s12410-012-9145-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9145-5

Keywords

Navigation