Skip to main content
Log in

How Do OCT and IVUS Compare to Histology in Coronary Atherosclerosis and Stenting?

  • Intravascular Imaging (U Landmesser, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Recent advances in intra-coronary imaging modalities have enabled us to evaluate precise plaque morphologies and vascular response to coronary stents in vivo. Superior resolution of optical coherence tomography (OCT) allows the measurement of fibrous cap thickness and detection of macrophage accumulation, both of which are critical to identify vulnerable plaques. Poor penetration of OCT however limits the assessment of plaque volume and vessel remodeling, while intravascular ultrasound (IVUS) is capable of evaluating these parameters. Caution must be exercised when interpreting IVUS-based tissue characterization because this technology lacks sufficient resolution to evaluate plaque composition. In stented arteries, OCT has the ability to detect uncovered struts and abnormal neointimal tissues including fibrin deposition, inflammation (hypersensitivity), and neoatherosclerosis, especially following drug-eluting stent placement. These findings suggest a potential clinical benefit of OCT to assess the risk of future adverse cardiac events; at the same time understanding the limitation of this technology is also important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American heart association. Circulation. 2012;125:e2–e220.

    Article  PubMed  Google Scholar 

  2. •• Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75. This article describes basic pathology of human progressive coronary atherosclerosis which is fundamental for understanding imaging findings.

    Article  PubMed  CAS  Google Scholar 

  3. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  PubMed  CAS  Google Scholar 

  4. Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297–303.

    Article  PubMed  Google Scholar 

  5. Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–92.

    Article  PubMed  CAS  Google Scholar 

  6. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991;84:1087–99.

    Article  PubMed  CAS  Google Scholar 

  7. Mintz GS, Kent KM, Pichard AD, et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation. 1997;95:1791–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–6.

    Article  PubMed  Google Scholar 

  9. Kawasaki M, Takatsu H, Noda T, et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation. 2002;105:2487–92.

    Article  PubMed  Google Scholar 

  10. Brezinski ME, Tearney GJ, Bouma BE, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93:1206–13.

    Article  PubMed  CAS  Google Scholar 

  11. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  12. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  PubMed  Google Scholar 

  13. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed  Google Scholar 

  14. • Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv. 2011;4:1257–70. This review article well summarizes current status, limitations, and potential future directions of OCT technology.

    Article  PubMed  Google Scholar 

  15. Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Hear J. 2010;31:401–15.

    Article  Google Scholar 

  16. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80.

    Article  PubMed  CAS  Google Scholar 

  17. Ryan J, Linde-Zwirble W, Engelhart L, et al. Temporal changes in coronary revascularization procedures, outcomes, and costs in the bare-metal stent and drug-eluting stent eras: results from the US medicare program. Circulation. 2009;119:952–61.

    Article  PubMed  Google Scholar 

  18. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.

    Article  PubMed  CAS  Google Scholar 

  19. Wenaweser P, Daemen J, Zwahlen M, et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol. 2008;52:1134–40.

    Article  PubMed  CAS  Google Scholar 

  20. • Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202. This article describes basic pathologic findings following drug-eluting stent placement.

    Article  PubMed  Google Scholar 

  21. • Finn AV, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007;115:2435–41. This article describes important pathologic features responsible for late stent thrombosis following drug-eluting stent implantation.

    Article  PubMed  Google Scholar 

  22. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310:1137–40.

    Article  PubMed  CAS  Google Scholar 

  23. el Fawal MA, Berg GA, Wheatley DJ, Harland WA. Sudden coronary death in Glasgow: nature and frequency of acute coronary lesions. Br Hear J. 1987;57:329–35.

    Article  Google Scholar 

  24. Davies MJ, Bland JM, Hangartner JR, et al. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Hear J. 1989;10:203–8.

    CAS  Google Scholar 

  25. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  PubMed  CAS  Google Scholar 

  26. Burke AP, Farb A, Malcom GT, et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97:2110–6.

    Article  PubMed  CAS  Google Scholar 

  27. Arbustini E, Dal Bello B, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.

    PubMed  CAS  Google Scholar 

  28. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  29. Ino Y, Kubo T, Tanaka A, et al. Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv. 2011;4:76–82.

    Article  PubMed  Google Scholar 

  30. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation. 1994;89:2462–78.

    Article  PubMed  CAS  Google Scholar 

  31. Velican C. A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne. 1981;19:321–37.

    PubMed  CAS  Google Scholar 

  32. Kolodgie FD, Burke AP, Nakazawa G, Virmani R. Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol. 2007;27:986–9.

    Article  PubMed  CAS  Google Scholar 

  33. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation. 1995;92:1355–74.

    Article  PubMed  CAS  Google Scholar 

  34. Davies MJ, Thomas AC. Plaque fissuring–the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    Article  PubMed  CAS  Google Scholar 

  35. Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22:1642–8.

    Article  PubMed  CAS  Google Scholar 

  36. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–40.

    Article  PubMed  CAS  Google Scholar 

  37. Mintz GS, Douek P, Pichard AD, et al. Target lesion calcification in coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 1992;20:1149–55.

    Article  PubMed  CAS  Google Scholar 

  38. •• Mintz GS, Nissen SE, Anderson WD, et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of Intravascular Ultrasound Studies (IVUS). A report of the American college of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2001;37:1478–92. This consensus document describes fundamental information to interpret IVUS findings.

    Article  PubMed  CAS  Google Scholar 

  39. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–16.

    Article  PubMed  CAS  Google Scholar 

  40. Siegel RJ, Ariani M, Fishbein MC, et al. Histopathologic validation of angioscopy and intravascular ultrasound. Circulation. 1991;84:109–17.

    Article  PubMed  CAS  Google Scholar 

  41. Okubo M, Kawasaki M, Ishihara Y, et al. Tissue characterization of coronary plaques: comparison of integrated backscatter intravascular ultrasound with virtual histology intravascular ultrasound. Circ J: Offic J Jpn Circ J. 2008;72:1631–9.

    Google Scholar 

  42. Thim T, Hagensen MK, Wallace-Bradley D, et al. Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imag. 2010;3:384–91.

    Article  Google Scholar 

  43. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  44. •• Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59:1058–72. This consensus document describes fundamental information to interpret OCT findings.

    Article  PubMed  Google Scholar 

  45. Siegel RJ, Swan K, Edwalds G, Fishbein MC. Limitations of postmortem assessment of human coronary artery size and luminal narrowing: differential effects of tissue fixation and processing on vessels with different degrees of atherosclerosis. J Am Coll Cardiol. 1985;5:342–6.

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka A, Imanishi T, Kitabata H, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118:2368–73.

    Article  PubMed  Google Scholar 

  47. Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Hear J. 2011;32:1251–9.

    Article  Google Scholar 

  48. Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91.

    Article  PubMed  CAS  Google Scholar 

  49. van Soest G, Regar E, Goderie TP, et al. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Card Imag. 2011;4:810–3.

    Article  Google Scholar 

  50. Nakazawa G, Vorpahl M, Finn AV, et al. One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Card Imag. 2009;2:625–8.

    Article  Google Scholar 

  51. • Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22. This article describes incidence, characteristics, and temporal development of in-stent neoatherosclerosis following bare metal and drug-eluting stent implantation. Various histologic images of neoatherosclerosis are shown in this paper, which is fundamental to understand IVUS and OCT images of neoatherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  52. Lee CW, Kang SJ, Park DW, et al. Intravascular ultrasound findings in patients with very late stent thrombosis after either drug-eluting or bare-metal stent implantation. J Am Coll Cardiol. 2010;55:1936–42.

    Article  PubMed  Google Scholar 

  53. Suzuki Y, Ikeno F, Koizumi T, et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation. JACC Cardiovasc Interv. 2008;1:168–73.

    Article  PubMed  Google Scholar 

  54. Templin C, Meyer M, Muller MF, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Hear J. 2010;31:1792–801.

    Article  Google Scholar 

  55. Guagliumi G, Sirbu V, Musumeci G, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20.

    Article  PubMed  Google Scholar 

  56. Hou J, Jia H, Liu H, et al. Neointimal tissue characteristics following sirolimus-eluting stent implantation: OCT quantitative tissue property analysis. The international journal of cardiovascular imaging 2012, March 16. Epub ahead of print.

  57. Tada T, Kadota K, Kubo S, et al. Optical coherence tomographic findings in the lesions after sirolimus-eluting stent implantation with peri-strut contrast staining. Circulation. 2011;124:A14826.

    Google Scholar 

  58. •• Nakano M, Vorpahl M, Otsuka F, et al. Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Card Imag. 2012;5:71–82. This ex vivo study well describes correlation of OFDI and IVUS images with histology in human stented coronary arteries.

    Article  Google Scholar 

  59. Manfrini O, Mont E, Leone O, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9.

    Article  PubMed  Google Scholar 

  60. Vorpahl M, Nakano M, Virmani R. Small black holes in optical frequency domain imaging matches intravascular neoangiogenesis formation in histology. Eur Heart J. 1889;2010:31.

    Google Scholar 

  61. Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Card Imag. 2008;1:638–48.

    Article  Google Scholar 

Download references

Acknowledgments

Terumo Corporation, Tokyo, Japan, and St. Jude Medical, St. Paul, MN, USA provided the major source of research funds for the ex vivo OCT/OFDI study with other support from CVPath Institute, Inc., Gaithersburg, MD, USA. Dr. Otsuka is supported by a research fellowship from the Uehara Memorial Foundation, Tokyo, Japan.

Disclosure

F. Otsuka: none; M. Nakano: none; F. D. Kolodgie: none; R. Virmani: consultant for Medtronic AVE, Abbott Vascular, W.L. Gore, Atrium Medical, Arsenal Medical, and Lutonix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Virmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsuka, F., Nakano, M., Kolodgie, F.D. et al. How Do OCT and IVUS Compare to Histology in Coronary Atherosclerosis and Stenting?. Curr Cardiovasc Imaging Rep 5, 249–263 (2012). https://doi.org/10.1007/s12410-012-9144-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9144-6

Keywords

Navigation