Skip to main content

Advertisement

Log in

Coronary MRA: Technical Advances and Clinical Applications

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Magnetic resonance angiography (MRA) has become a routine clinical tool to evaluate arteries in the head and neck, abdomen, and extremities. However, coronary MRA (CMRA) is a more challenging task. A number of factors have hindered its progress, including: 1) the motion of the heart during cardiac and respiratory cycles; 2) the highly tortuous courses; and 3) the small sizes of coronary arteries. It is important to have an appropriate balance between signal-to-noise ratio (SNR), imaging speed, and spatial resolution when determining imaging parameters of CMRA. Whole heart CMRA at 1.5 T has been successfully introduced as a method of choice that can provide visualization of all three major coronary arteries in a single 3D volume. Recent single and multicenter studies suggest that 1.5 T whole heart CMRA can eliminate the need for diagnostic coronary catheterization in many patients at risk of coronary artery disease. 3.0 T cardiovascular MR has become an area of active research in recent years. Contrast-enhanced coronary MRA at 3.0 T improves SNR and contrast-to-noise ratio and shows high accuracy in the detection of significant coronary artery stenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. Nov 27 2008;359(22):2324–2336

    Article  PubMed  CAS  Google Scholar 

  2. Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. Dec 1999;213(3):751–758.

    PubMed  CAS  Google Scholar 

  3. Li D, Kaushikkar S, Haacke E, et al. Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology. 1996;201:857–863.

    PubMed  CAS  Google Scholar 

  4. Edelman R, Manning W, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181(3):641–643.

    PubMed  CAS  Google Scholar 

  5. Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. May 1993;187(2):401–406.

    PubMed  CAS  Google Scholar 

  6. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. Jun 22 1999;99(24):3139–3148.

    PubMed  CAS  Google Scholar 

  7. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. May 1995;33(5):689–696.

    Article  PubMed  CAS  Google Scholar 

  8. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. Jun 2001;219(3):828–834.

    PubMed  CAS  Google Scholar 

  9. Sakuma H, Ichikawa Y, Suzawa N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. Oct 2005;237(1):316–321.

    Article  PubMed  Google Scholar 

  10. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. Dec 2003;50(6):1223–1228.

    Article  PubMed  Google Scholar 

  11. Zheng J, Li D, Bae KT, Woodard P, Haacke EM. Three-dimensional gadolinium-enhanced coronary magnetic resonance angiography: initial experience. J Cardiovasc Magn Reson. 1999;1(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  12. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. Nov-Dec 1993;3(6):877–881.

    Article  PubMed  CAS  Google Scholar 

  13. Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology. Apr 1997;203(1):275–280.

    PubMed  CAS  Google Scholar 

  14. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. Oct 1997;205(1):137–146.

    PubMed  CAS  Google Scholar 

  15. Anzai Y, Prince MR, Chenevert TL, et al. MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent. J Magn Reson Imaging. Jan–Feb 1997;7(1):209–214.

    Article  PubMed  CAS  Google Scholar 

  16. Huber ME, Paetsch I, Schnackenburg B, et al. Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med. Jan 2003;49(1):115–121.

    Article  PubMed  Google Scholar 

  17. Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. Jul 2006;56(1):167–176.

    Article  PubMed  Google Scholar 

  18. Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med. May 2003;49(5):803–809.

    Article  PubMed  Google Scholar 

  19. Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. Apr 2004;51(4):799–806.

    Article  PubMed  Google Scholar 

  20. Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. Apr 2006;55(4):858–864.

    Article  PubMed  Google Scholar 

  21. van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med. Dec 2009;62(6):1379–1384.

    Article  PubMed  Google Scholar 

  22. Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med. Jul 2007;58(1):1–7.

    Article  PubMed  Google Scholar 

  23. Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol. Sep 2008;43(9):663–668.

    Article  PubMed  Google Scholar 

  24. Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Invest Radiol. Jul 2009;44(7):369–374.

    Article  PubMed  CAS  Google Scholar 

  25. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. Dec 1992;28(2):202–213.

    Article  PubMed  CAS  Google Scholar 

  26. Stehning C, Bornert P, Nehrke K, Eggers H, Dossel O. Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med. Jul 2004;52(1):197–203.

    Article  PubMed  CAS  Google Scholar 

  27. Deshpande VS, Wielopolski PA, Shea SM, Carr JC, Zheng J, Li D. Coronary artery imaging using contrast-enhanced 3D segmented EPI. J Magn Reson Imaging. 2001;13(5):676–681.

    Article  PubMed  CAS  Google Scholar 

  28. Bhat H, Zuehlsdorff S, Bi X, Li D. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med. Jun 2009;61(6):1388–1395.

    Article  PubMed  Google Scholar 

  29. • Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. Sep 14 2010;56(12):983–991. This is the first national multicenter trial that assessed the diagnostic value of 1.5-T whole-heart CMRA.

  30. • Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. Jun 30 2009;54(1):69–76. This is a single-center, prospective trial comparing the accuracy of 3.0-T contrast-enhanced whole-heart CMRA with conventional quantitative coronary angiography in patients with suspected CAD.

  31. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. Nov 21 2006;48(10):1946–1950.

    Article  PubMed  Google Scholar 

  32. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. Feb 2 2010;152(3):167–177

    PubMed  Google Scholar 

  33. Nagel E. Magnetic resonance coronary angiography: the condemned live longer. J Am Coll Cardiol. Sep 14 2010;56(12):992–994.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debiao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Li, K. & Li, D. Coronary MRA: Technical Advances and Clinical Applications. Curr Cardiovasc Imaging Rep 4, 165–170 (2011). https://doi.org/10.1007/s12410-010-9064-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9064-2

Keywords

Navigation