Skip to main content

Advertisement

Log in

Clinical Role of Hybrid Imaging

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Recent technological advances have fueled the growth in hybrid radionuclide and CT imaging of the heart. Noninvasive imaging studies are reliable means to diagnose coronary artery disease (CAD), stratify risk, and guide clinical management. Myocardial perfusion scintigraphy is a robust, widely available noninvasive modality for the evaluation of ischemia from known or suspected CAD. Cardiac CT (coronary artery calcium score and coronary CT angiography) has emerged as a clinically robust noninvasive anatomic imaging test, capable of rapidly diagnosing or excluding obstructive CAD. Both anatomic and functional modalities have strengths and weaknesses, and can complement each other by offering integrated structural and physiologic information. As we discuss below, in selected patients, hybrid imaging may facilitate more accurate diagnosis, risk stratification, and management in a “one-stop shop” setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Heller GV, Links J, Bateman TM, et al.: American Society of Nuclear Cardiology and Society of Nuclear Medicine joint position statement: attenuation correction of myocardial perfusion SPECT scintigraphy. J Nucl Cardiol 2004, 11:229–230.

    Article  PubMed  Google Scholar 

  2. Klocke FJ, Baird MG, Lorell BH, et al.: ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003, 42:1318–1333.

    Article  PubMed  Google Scholar 

  3. •• Hendel RC, Berman DS, Di Carli MF, et al.: ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 2009, 1–114. The article outlines the most up-to-date multosociety recommendations for the appropriate use criteria of cardiac radionuclide imaging.

  4. Maddahi J, Mendez R, Mahmarian JJ, et al.: Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 2009, 16:351–357.

    Article  PubMed  Google Scholar 

  5. Nekolla SG, Martinez-Moeller A, Saraste A: PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 2009, 36(Suppl 1):S121–S130.

    Article  PubMed  Google Scholar 

  6. • Di Carli MF, Hachamovitch R: New technology for noninvasive evaluation of coronary artery disease. Circulation 2007, 115:1464–1480.

    Article  PubMed  Google Scholar 

  7. Nandalur KR, Dwamena BA, Choudhri AF, et al.: Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol 2008, 15:444–451.

    Article  PubMed  Google Scholar 

  8. Bateman TM, Heller GV, McGhie AI, et al.: Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006, 13:24–33.

    Article  PubMed  Google Scholar 

  9. Berman DS, Hachamovitch R, Shaw LJ, et al.: Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med 2006, 47:1107–1118.

    PubMed  Google Scholar 

  10. Go R, Marwick T, MacIntyre W, et al.: A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990, 31:1899–1905.

    CAS  PubMed  Google Scholar 

  11. Stewart RE, Schwaiger M, Molina E, et al.: Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991, 67:1303–1310.

    Article  CAS  PubMed  Google Scholar 

  12. Bateman TM, Berman DS, Matloff JM: Radionuclide ventriculography for assessing cardiac shock early after open-heart surgery. Acute Care 1985, 11:48–52.

    CAS  PubMed  Google Scholar 

  13. Boden WE, O’Rourke RA, Teo KK, et al.: Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007, 356:1503–1516.

    Article  CAS  PubMed  Google Scholar 

  14. Hachamovitch R, Berman DS, Kiat H, et al.: Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. Circulation 2002, 105:823–829.

    Article  PubMed  Google Scholar 

  15. Lima RSL, Watson DD, Goode AR, et al.: Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003, 42:64–70.

    Article  PubMed  Google Scholar 

  16. •• Sampson UK, Dorbala S, Limaye A, et al.: Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007, 49:1052–1058. The article is currently the largest clinical study that has validated the diagnostic efficacy of rubidium PET imaging.

    Article  CAS  PubMed  Google Scholar 

  17. Brown TLY, Merrill J, Volokh L, et al.: Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated (82)rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008, 35:336–342.

    Article  PubMed  Google Scholar 

  18. • Dorbala S, Vangala D, Sampson U, et al.: Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 2007, 48:349–358.

    PubMed  Google Scholar 

  19. Parkash R, deKemp RA, Ruddy TD, et al.: Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004, 11:440–449.

    Article  CAS  PubMed  Google Scholar 

  20. • Camici PG, Crea F: Coronary microvascular dysfunction. N Engl J Med 2007, 356:830–840.

    Article  CAS  PubMed  Google Scholar 

  21. • Dilsizian V, Bacharach SL, Beanlands RS, et al.: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009, 16:651.

    Article  Google Scholar 

  22. Goetze S, Brown TL, Lavely WC, et al.: Attenuation correction in myocardial perfusion SPECT/CT: effects of misregistration and value of reregistration. J Nucl Med 2007, 48:1090–1095.

    Article  PubMed  Google Scholar 

  23. Masood Y, Liu TH, Depuey G, et al.: Clinical validation of SPECT attenuation correction using x-ray computed tomography-derived attenuation maps: multicenter clinical trial with angiographic correlation. J Nucl Cardiol 2005, 12:676–686.

    Article  PubMed  Google Scholar 

  24. Malkerneker D, Brenner R, Martin WH, et al.: CT-based attenuation correction versus prone imaging to decrease equivocal interpretations of rest/stress Tc-99m tetrofosmin SPECT MPI. J Nucl Cardiol 2007, 14:314–323.

    Article  PubMed  Google Scholar 

  25. Fricke E, Fricke H, Weise R, et al.: Attenuation correction of myocardial SPECT perfusion images with low-dose CT: evaluation of the method by comparison with perfusion PET. J Nucl Med 2005, 46:736–744.

    PubMed  Google Scholar 

  26. Dorbala S, Hachamovitch R, Curillova Z, et al.: Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009, 2:846–854.

    Article  PubMed  Google Scholar 

  27. • Einstein AJ, Moser KW, Thompson RC, et al.: Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007, 116:1290–1305.

    Article  PubMed  Google Scholar 

  28. Blankenhorn DH, Stern D: Calcification of the coronary arteries. Am J Roentgenol Radium Ther Nucl Med 1959, 81:772–777.

    CAS  PubMed  Google Scholar 

  29. Kaufmann RB, Peyser PA, Sheedy PF, et al.: Quantification of coronary artery calcium by electron beam computed tomography for determination of severity of angiographic coronary artery disease in younger patients. J Am Coll Cardiol 1995, 25:626–632.

    Article  CAS  PubMed  Google Scholar 

  30. Bellasi A, Lacey C, Taylor AJ, et al.: Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am J Cardiol 2007, 100:409–414.

    Article  CAS  PubMed  Google Scholar 

  31. Berman DS, Wong ND, Gransar H, et al.: Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004, 44:923–930.

    Article  CAS  PubMed  Google Scholar 

  32. Rozanski A, Gransar H, Wong ND, et al.: Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 2007, 49:1352–1361.

    Article  CAS  PubMed  Google Scholar 

  33. Chang SM, Nabi F, Xu J, et al.: The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 2009, 54:1872–1882.

    Article  PubMed  Google Scholar 

  34. Schenker MP, Dorbala S, Hong ECT, et al.: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008, 117:1693–1700.

    Article  PubMed  Google Scholar 

  35. Uebleis C, Becker A, Griesshammer I, et al.: Stable coronary artery disease: prognostic value of myocardial perfusion SPECT in relation to coronary calcium scoring—long-term follow-up. Radiology 2009, 252:682–690.

    Article  PubMed  Google Scholar 

  36. •• van Werkhoven JM, Schuijf JD, Gaemperli O, et al.: Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 2009, 53:623–632. This important article first validated the incremental prognostic values of calcium score and CTCA in addition to SPECT MPI.

    Article  PubMed  Google Scholar 

  37. Nabi F, Chang SM, Pratt CM, et al.: Coronary artery calcium scoring in the emergency department: identifying which patients with chest pain can be safely discharged home. Ann Emerg Med 2010. doi:10.1016/j.annemergmed.2010.01.017

  38. Taylor AJ, Bindeman J, Feuerstein I, et al.: Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol 2008, 51:1337–1341.

    Article  PubMed  Google Scholar 

  39. Thompson RC, McGhie AI, Moser KW, et al.: Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J Nucl Cardiol 2005, 12:392–400.

    Article  PubMed  Google Scholar 

  40. Blankstein R, Dorbala S: Adding calcium scoring to myocardial perfusion imaging: Does it alter physicians’ therapeutic decision making? J Nucl Cardiol 2010, 17:168–171.

    Article  PubMed  Google Scholar 

  41. Rosen BD, Fernandes V, McClelland RL, et al.: Relationship between baseline coronary calcium score and demonstration of coronary artery stenoses during follow-up MESA (Multi-Ethnic Study of Atherosclerosis). JACC Cardiovasc Imaging 2009, 2:1175–1183.

    Article  PubMed  Google Scholar 

  42. Budoff M, Dowe D, Jollis J, et al.: Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008, 52:1724–1732.

    Article  PubMed  Google Scholar 

  43. Miller JM, Rochitte CE, Dewey M, et al.: Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008, 359:2324–2336.

    Article  CAS  PubMed  Google Scholar 

  44. Meijboom WB, Meijs MFL, Schuijf JD, et al.: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008, 52:2135–2144.

    Article  PubMed  Google Scholar 

  45. Gaemperli O, Valenta I, Schepis T, et al.: Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease. Eur Radiol 2008, 18:1162–1173.

    Article  PubMed  Google Scholar 

  46. Gilard M, Le Gal G, Cornily JC, et al.: Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings: a prospective management outcome study. Arch Intern Med 2007, 167:1686–1689.

    Article  PubMed  Google Scholar 

  47. Leber AW, Knez A, von Ziegler F, et al.: Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005, 46:147–154.

    Article  PubMed  Google Scholar 

  48. Raff GL, Gallagher MJ, O’Neill WW, et al.: Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005, 46:552–557.

    Article  PubMed  Google Scholar 

  49. Husmann L, Gaemperli O, Schepis T, et al.: Accuracy of quantitative coronary angiography with computed tomography and its dependency on plaque composition: plaque composition and accuracy of cardiac CT. Int J Cardiovasc Imaging 2008, 24:895–904.

    Article  PubMed  Google Scholar 

  50. Ehara M, Kawai M, Surmely JF, et al.: Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 2007, 49:951–959.

    Article  PubMed  Google Scholar 

  51. van Mieghem CAG, Cademartiri F, Mollet NR, et al.: Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 2006, 114:645–653.

    Article  PubMed  Google Scholar 

  52. Di Carli MF, Dorbala S, Curillova Z, et al.: Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 2007, 14:799–809.

    Article  PubMed  Google Scholar 

  53. Sato A, Hiroe M, Tamura M, et al.: Quantitative measures of coronary stenosis severity by 64-slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging. J Nucl Med 2008, 49:564–572.

    Article  PubMed  Google Scholar 

  54. Hachamovitch R, Hayes SW, Friedman JD, et al.: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003, 107:2900–2907.

    Article  PubMed  Google Scholar 

  55. Tonino PAL, De Bruyne B, Pijls NHJ, et al.: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009, 360:213–224.

    Article  CAS  PubMed  Google Scholar 

  56. Lertsburapa K, Ahlberg AW, Bateman TM, et al.: Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 2008, 15:745–753.

    PubMed  Google Scholar 

  57. Eagle KA, Guyton RA, Davidoff R, et al.: ACC/AHA Guidelines for Coronary Artery Bypass Graft Surgery: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines for Coronary Artery Bypass Graft Surgery). American College of Cardiology/American Heart Association. J Am Coll Cardiol 1999, 34:1262–1347.

    Article  CAS  PubMed  Google Scholar 

  58. Rispler S, Keidar Z, Ghersin E, et al.: Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007, 49:1059–1067.

    Article  PubMed  Google Scholar 

  59. Namdar M, Hany TF, Koepfli P, et al.: Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 2005, 46:930–935.

    PubMed  Google Scholar 

  60. Sharir T, Germano G, Kang X, et al.: Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001, 42:831–837.

    CAS  PubMed  Google Scholar 

  61. Min JK, Gilmore A, Budoff MJ, et al.: Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology 2010, 254:801–808.

    Article  PubMed  Google Scholar 

  62. Hachamovitch R, Johnson J, Hlatky M, et al.: The study of myocardial perfusion and coronary anatomy imaging roles in CAD (SPARC): design, rationale, and baseline patient characteristics of a prospective, multicenter observational registry comparing PET, SPECT, and CTA for resource utilization and clinical outcomes. J Nucl Cardiol 2009, 16:935–948.

    Article  PubMed  Google Scholar 

  63. Gaemperli O, Husmann L, Schepis T, et al.: Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? Eur Heart J 2009, 30:2921–2929.

    Article  PubMed  Google Scholar 

  64. •• Shaw LJ, Berman DS, Maron DJ, et al.: Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008, 117:1283–1291. The nuclear substudy of the COURAGE trial has shown the clinical benefit of revascularization over medical therapy alone is only significant in chronic stable angina patients with moderate to severe ischemia.

    Article  PubMed  Google Scholar 

  65. Motoyama S, Kondo T, Sarai M, et al.: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007, 50:319–326.

    Article  PubMed  Google Scholar 

  66. Min JK, Shaw LJ, Devereux RB, et al.: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007, 50:1161–1170.

    Article  PubMed  Google Scholar 

  67. Myers WO, Blackstone EH, Davis K, et al.: CASS Registry long term surgical survival. Coronary Artery Surgery Study. J Am Coll Cardiol 1999, 33:488–498.

    Article  CAS  PubMed  Google Scholar 

  68. Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006, 113:1305–1310.

    Article  PubMed  Google Scholar 

  69. • Hendel RC, Patel MR, Kramer CM, et al.: ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006, 48:1475–1497.

    Article  PubMed  Google Scholar 

  70. Hirai N, Horiguchi J, Fujioka C, et al.: Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 2008, 248:424–430.

    Article  PubMed  Google Scholar 

  71. Husmann L, Valenta I, Gaemperli O, et al.: Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 2008, 29:191–197.

    Article  PubMed  Google Scholar 

  72. Hacker M, Jakobs T, Hack N, et al.: Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 2007, 34:4–10.

    Article  PubMed  Google Scholar 

  73. Haramati LB, Levsky JM, Jain VR, et al.: CT angiography for evaluation of coronary artery disease in inner-city outpatients: an initial prospective comparison with stress myocardial perfusion imaging. Int J Cardiovasc Imaging 2009, 25:303–313.

    Article  PubMed  Google Scholar 

  74. Schuijf JD, Wijns W, Jukema JW, et al.: Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006, 48:2508–2514.

    Article  PubMed  Google Scholar 

  75. Wagner B, Anton M, Nekolla SG, et al.: Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. J Am Coll Cardiol 2006, 48:2107–2115.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Dorbala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, E.M., Ali, B. & Dorbala, S. Clinical Role of Hybrid Imaging. Curr Cardiovasc Imaging Rep 3, 324–335 (2010). https://doi.org/10.1007/s12410-010-9033-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-010-9033-9

Keywords

Navigation