Skip to main content
Log in

Near-infrared spectroscopy for the detection of lipid core coronary plaques

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Lipid core coronary plaques (LCPs), which cannot be reliably detected by conventional diagnostic measures, are widely considered to be the cause of most acute coronary syndromes. Accumulating evidence also indicates that LCPs may increase the risk of stenting complications. A catheter-based near-infrared spectroscopy (NIRS) system is now available for the detection of LCPs in the arteries of patients undergoing coronary angiography. The system, which uses the well-documented ability of NIRS to determine the chemical composition of unknown substances, has been validated in an autopsy study and a clinical trial. The system has now been used in more than 300 patients and has provided novel information for use in assessment of coronary disease. Multiple studies are in progress to assess the full clinical benefit of NIRS for the goals of 1) improving the safety of stenting, 2) preventing a second coronary event in patients with known coronary disease, and 3) use as a possible component in a strategy for the primary prevention of coronary events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lloyd-Jones D, Adams, R, Carnethon M, et al.: Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119:480–486.

    Article  PubMed  Google Scholar 

  2. Clarke MC, Figg N, Maguire JJ, et al.: Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 2006, 12:1075–1080.

    Article  PubMed  CAS  Google Scholar 

  3. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  4. Kagan A, Livsic AM, Sternby N, Vihert AM: Coronary-artery thrombosis and the acute attack of coronary heart-disease. Lancet 1968, 2:1199–1200.

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein JA: CT angiography: imaging anatomy to deduce coronary physiology. Catheter Cardiovasc Interv 2009, 73:503–505.

    Article  PubMed  Google Scholar 

  6. Giroud D, Li JM, Urban P, et al.: Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992, 69:729–732.

    Article  PubMed  CAS  Google Scholar 

  7. Gonzalo N, García-García HM, Ligthart J, et al.: Coronary plaque composition as assessed by greyscale intravascular ultrasound and radiofrequency spectral data analysis. Int J Cardiovasc Imaging 2008, 24:811–818.

    Article  PubMed  Google Scholar 

  8. Schaar JA, Mastik F, Regar E, et al.: Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007, 13:995–1001.

    Article  PubMed  CAS  Google Scholar 

  9. Kips JG, Segers P, Van Bortel LM: Identifying the vulnerable plaque: a review of invasive and non-invasive imaging modalities. Artery Res 2008, 2:21–34.

    Google Scholar 

  10. Uchida Y, Nakamura F, Tomaru T, et al.: Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 1995, 130:195–203.

    Article  PubMed  CAS  Google Scholar 

  11. Ohtani T, Ueda Y, Mizote I, et al.: Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome detection of vulnerable patients by angioscopy. J Am Coll Cardiol 2006, 47:2194–2200.

    Article  PubMed  Google Scholar 

  12. Ishibashi F, Aziz K, Abela G, Waxman S: Update on coronary angioscopy: review of a 20-year experience and potential application for detection of vulnerable plaque. J Interv Cardiol 2006, 19:17–25.

    Article  PubMed  Google Scholar 

  13. Patel NA, Stamper DL, Brezinski ME: Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc Intervent Radiol 2005, 28:1–9.

    Article  PubMed  Google Scholar 

  14. Yabushita H, Bouma BE, Houser SL, et al.: Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002, 106:1640–1645.

    Article  PubMed  Google Scholar 

  15. Tearney GJ, Yabushita H, Houser SL, et al.: Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003, 107:113–119.

    Article  PubMed  Google Scholar 

  16. Yun SH, Tearney GJ, Vakoc BJ, et al.: Comprehensive volumetric optical microscopy in vivo. Nat Med 2007, 12:1429–1433.

    Article  Google Scholar 

  17. Lavine B, Workman J: Chemometrics. Anal Chem 2008, 80:4519–4531.

    Article  PubMed  CAS  Google Scholar 

  18. Williams P, Norris K: Near-Infrared Technology in the Agriculture and Food Industries, edn 2. St. Paul, MN: American Association of Cereal Chemists Inc.; 2001.

    Google Scholar 

  19. Ciurczak EW, Drennen JK: Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy. New York: Marcel Dekker; 2002.

    Google Scholar 

  20. Mendelson Y: Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem 1992, 38:1601–1607.

    PubMed  CAS  Google Scholar 

  21. Moreno PR, Muller JE: Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Opin Cardiol 2002, 17:638–647.

    Article  PubMed  Google Scholar 

  22. Lodder RA, Cassis L, Ciurczak EW: Arterial analysis with a novel near-IR fiber-optic probe. Spectroscopy 1990, 5:12–17.

    Google Scholar 

  23. Cassis LA, Lodder RA: Near-IR imaging of atheromas in living arterial tissue. Anal Chem 1993, 65:1247–1256.

    Article  PubMed  CAS  Google Scholar 

  24. Jaross W, Neumeister V, Lattke P, Schuh D: Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy. Atherosclerosis 1999, 147:327–337.

    Article  PubMed  CAS  Google Scholar 

  25. Neumeister V, Scheibe M, Lattke P, Jaross W: Determination of the cholesterol-collagen ratio of arterial atherosclerotic plaques using near infrared spectroscopy as a possible measure of plaque stability. Atherosclerosis 2002, 165:251–257.

    Article  PubMed  CAS  Google Scholar 

  26. Moreno PR, Lodder RA, Purushothaman KR, et al.: Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002, 105:923–927.

    Article  PubMed  Google Scholar 

  27. Moreno PR, Ryan SE, Hopkins D: Identification of lipid-rich aortic atherosclerotic plaques in living rabbits with a near infrared spectroscopy catheter. J Am Coll Cardiol 2001, 37(Suppl A):3A.

    Google Scholar 

  28. Lilledahl MB, Haugen OA, Barkost M, Svaasand LO: Reflection spectroscopy of atherosclerotic plaque. J Biomed Opt 2006, 11:021005.

    Article  PubMed  Google Scholar 

  29. Dempsey RJ, Davis DG, Buice RG, Lodder RA: Biological and medical applications of near-infrared spectrometry. Appl Spectrosc 1996, 50:18A–34A.

    Article  CAS  Google Scholar 

  30. Wang J, Geng Y, Guo B, et al.: Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol 2002, 39:1305–1313.

    Article  PubMed  Google Scholar 

  31. Moreno PR, Ryan SE, Hopkins D, et al.: Identification of lipid-rich plaques in human coronary artery autopsy specimens by near-infrared spectroscopy. J Am Coll Cardiol 2001, 37(Suppl A):356A.

    Google Scholar 

  32. Marshik B, Tan H, Tang J, et al.: Discrimination of lipid-rich plaques in human aorta specimens with NIR spectroscopy through whole blood. Am J Cardiol 2002, 90(Suppl 6A):129H.

    Google Scholar 

  33. Marshik B, Tan H, Tang J, et al.: Detection of thin-capped fibroatheromas in human aorta tissue with near infrared spectroscopy through blood. J Am Coll Cardiol 2003, 41(Suppl 1):42.

    Article  Google Scholar 

  34. Waxman S, Ishibashi F, Caplan JD: Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques. J Nucl Cardiol 2007, 14:719–728.

    Article  PubMed  Google Scholar 

  35. Caplan JD, Waxman S, Nesto RW, Muller JE: Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006, 47(Suppl C):C92–C96.

    Article  PubMed  Google Scholar 

  36. Waxman S, Tang J, Marshik BJ, et al.: In vivo detection of a coronary artificial target with a near infrared spectroscopy catheter. Am J Cardiol 2004, 94(Suppl 6A):141E.

    Google Scholar 

  37. Waxman S, Khabbaz K, Connolly R, et al.: Intravascular imaging of atherosclerotic human coronaries in a porcine model: a feasibility study. Int J Cardiovasc Imaging 2008, 24:37–44.

    Article  PubMed  Google Scholar 

  38. Gardner CM, Tan H, Hull EL, et al.: Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. J Am Coll Cardiol Imaging 2008, 1:638–648.

    Google Scholar 

  39. Waxman S, Dixon SR, L’Allier P, et al.: In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results and exploratory analysis of the Spectroscopic Assessment of Coronary Lipid (SPECTACL) Multicenter Study. J Am Coll Cardiol Imaging 2009, 2:858–868.

    Google Scholar 

  40. Waxman S: Near-infrared spectroscopy for plaque characterization. J Interv Cardiol 2008, 21:452–458.

    Article  PubMed  Google Scholar 

  41. US Food and Drug Administration: Press announcements. Available at http://www.fda.gov/bbs/topics/news/2008/new01827.html. Accessed April 2009.

  42. Maini B: Clinical coronary chemograms and lipid core containing coronary plaques. JACC Cardiovasc Imaging 2008, 1:689–690.

    Article  PubMed  Google Scholar 

  43. Muller JE, Tawakol A, Kathiresan S, Narula J: New opportunities for identification and reduction of coronary risk treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol 2006, 47(Suppl C):2–6.

    Article  Google Scholar 

  44. Dixon S: Detecting vulnerable plaque. CathLab Digest 2009, 17:10.

    Google Scholar 

  45. Nissen SE: Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis. Am J Cardiol 2002, 89:24B–31B.

    Article  PubMed  Google Scholar 

  46. Farb A, Burke AP, Kolodgie FD, Virmani R: Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 2003, 108:1701–1706.

    Article  PubMed  Google Scholar 

  47. Joner M, Finn AV, Farb A, et al.: Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006, 48:193–202.

    Article  PubMed  Google Scholar 

  48. Oyabu J, Ueda Y, Ogasawara N, et al.: Angioscopic evaluation of neointima coverage: sirolimus drug-eluting stent versus bare metal stent. Am Heart J 2006, 152:1168–1174.

    Article  PubMed  CAS  Google Scholar 

  49. Finn AV, Nakazawa G, Ladich E, et al.: Does underlying plaque morphology play a role in vessel healing after drug-eluting stent implantation? J Am Coll Cardiol Imaging 2008, 1:1485–1488.

    Google Scholar 

  50. Nakazawa G, Finn AV, Joner M, et al.: Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation 2008, 118:1138–1145.

    Article  PubMed  Google Scholar 

  51. Kawaguchi R: Usefulness of virtual histology intravascular ultrasound to predict distal embolization for ST-segment elevation myocardial infarction. J Am Coll Cardiol 2007, 50:1641–1646.

    Article  PubMed  Google Scholar 

  52. ClinicalTrials.Gov: An Observational Study of Cholesterol in Coronary Arteries (COLOR). Available at http://www.clinicaltrials.gov/ct2/show/NCT00831116. Accessed April 2009.

  53. Sacks FM, Rudel LL, Conner A, et al.: Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res 2009, 50:894–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Sum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sum, S.T., Madden, S.P., Hendricks, M.J. et al. Near-infrared spectroscopy for the detection of lipid core coronary plaques. curr cardiovasc imaging rep 2, 307–315 (2009). https://doi.org/10.1007/s12410-009-0036-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0036-3

Keywords

Navigation