Skip to main content
Log in

Myocardial metabolic imaging: Viability and beyond

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Because of the high metabolic cost of maintaining an adequate cardiac output, the heart possesses the ability to utilize a wide variety of metabolic substrates, including fatty acids, glucose, lactate, amino acids, and ketone bodies. The relative contribution of each of these substrates is regulated by multiple factors, including substrate concentration, presence of adequate blood flow and oxygen, the action of a variety of hormones, and the influences of disease states that can alter the metabolic machinery of the heart. This review summarizes the biochemical and cellular basis of myocardial substrate selection, as well as the changes in the metabolic phenotype of the heart in response to cardiac diseases. Based on this background, this review also illustrates the nuclear-based imaging techniques that can be used to assess myocardial metabolism and their current and future applications to patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Russell RR, Bergeron R, Shulman GI, Young LH: Translocation of myocardial GLUT4 and increased glucose uptake through activation of AMP-activated protein kinase by AICAR. Am J Physiol 1999, 277:H643–H649.

    PubMed  CAS  Google Scholar 

  2. Russell RR III, Li J, Coven DL, et al.: AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 2004, 114:495–503.

    PubMed  CAS  Google Scholar 

  3. Dence CS, Herrero P, Schwarz SW, et al.: Imaging myocardium enzymatic pathways with carbon-11 radiotracers. Methods Enzymol 2004, 385:286–315.

    Article  PubMed  CAS  Google Scholar 

  4. Ikoma Y, Watabe H, Shidahara M, et al.: PET kinetic analysis: error consideration of quantitative analysis in dynamic studies. Ann Nucl Med 2008, 22:1–11.

    Article  PubMed  Google Scholar 

  5. Seo Y, Teo BK, Hadi M, et al.: Quantitative accuracy of PET/CT for image-based kinetic analysis. Med Phys 2008, 35:3086–3089.

    Article  PubMed  Google Scholar 

  6. Tillisch J, Brunken R, Marshall R, et al.: Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986, 314:884–888.

    PubMed  CAS  Google Scholar 

  7. Gropler RJ, Geltman EM, Sampathkumaran K, et al.: Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993, 22:1587–1597.

    PubMed  CAS  Google Scholar 

  8. Maes AF, Borgers M, Flameng W, et al.: Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 1997, 29:62–68.

    Article  PubMed  CAS  Google Scholar 

  9. Tamaki N, Kawamoto M, Tadamura E, et al.: Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 1995, 91:1697–1705.

    PubMed  CAS  Google Scholar 

  10. Knuuti MJ, Saraste M, Nuutila P, et al.: Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 1994, 127:785–796.

    Article  PubMed  CAS  Google Scholar 

  11. Bonow RO, Dilsizian V: Thallium 201 for assessment of myocardial viability. Semin Nucl Med 1991, 21:230–241.

    Article  PubMed  CAS  Google Scholar 

  12. Schinkel AF, Bax JJ, Sozzi FB, et al.: Prevalence of myocardial viability assessed by single photon emission computed tomography in patients with chronic ischaemic left ventricular dysfunction. Heart 2002, 88:125–130.

    Article  PubMed  CAS  Google Scholar 

  13. Pigott JD, Kouchoukos NT, Oberman A, Cutter GR: Late results of surgical and medical therapy for patients with coronary artery disease and depressed left ventricular function. J Am Coll Cardiol 1985, 5:1036–1045.

    PubMed  CAS  Google Scholar 

  14. Acampa W, Petretta M, Spinelli L, et al.: Survival benefit after revascularization is independent of left ventricular ejection fraction improvement in patients with previous myocardial infarction and viable myocardium. Eur J Nucl Med Mol Imaging 2005, 32:430–437.

    Article  PubMed  Google Scholar 

  15. Meluzin J, Cerny J, Spinarova L, et al.: Prognosis of patients with chronic coronary artery disease and severe left ventricular dysfunction. The importance of myocardial viability. Eur J Heart Fail 2003, 5:85–93.

    Article  PubMed  Google Scholar 

  16. Di Carli MF, Davidson M, Little R, et al.: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994, 73:527–533.

    Article  PubMed  Google Scholar 

  17. Di Carli MF, Asgarzadie F, Schelbert HR, et al.: Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995, 92:3436–3444.

    PubMed  Google Scholar 

  18. Eitzman D, al-Aouar Z, Kanter HL, et al.: Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992, 20:559–565.

    Article  PubMed  CAS  Google Scholar 

  19. Baron SJ, Li J, Russell RR III, et al.: Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circ Res 2005, 96:337–345.

    Article  PubMed  CAS  Google Scholar 

  20. He ZX, Shi RF, Wu YJ, et al.: Direct imaging of exerciseinduced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation 2003, 108:1208–1213.

    Article  PubMed  CAS  Google Scholar 

  21. McNulty PH, Jagasia D, Cline GW, et al.: Persistent changes in myocardial glucose metabolism in vivo during reperfusion of a limited-duration coronary occlusion. Circulation 2000, 101:917–922.

    PubMed  CAS  Google Scholar 

  22. Abbott BG, Liu YH, Arrighi JA: [18F]Fluorodeoxyglucose as a memory marker of transient myocardial ischaemia. Nucl Med Commun 2007, 28:89–94.

    Article  PubMed  CAS  Google Scholar 

  23. Fujibayashi Y, Yonekura Y, Takemura Y, et al.: Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration. J Nucl Med 1990, 31:1818–1822.

    PubMed  CAS  Google Scholar 

  24. Hosokawa R, Nohara R, Fujibayashi Y, et al.: Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med 1997, 38:1857–1863.

    PubMed  CAS  Google Scholar 

  25. Dilsizian V, Bateman TM, Bergmann SR, et al.: Metabolic imaging with beta-methyl-p-[123I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005, 112:2169–2174.

    Article  PubMed  Google Scholar 

  26. Depré C, Shipley GL, Chen W, et al.: Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 1998, 4:1269–1275.

    Article  PubMed  CAS  Google Scholar 

  27. Sack MN, Rader TA, Park S, et al.: Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996, 94:2837–2842.

    PubMed  CAS  Google Scholar 

  28. Davila-Roman VG, Vedala G, Herrero P, et al.: Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002, 40:271–277.

    Article  PubMed  CAS  Google Scholar 

  29. Chandler MP, Stanley WC, Morita H, et al.: Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 2002, 91:278–280.

    Article  PubMed  CAS  Google Scholar 

  30. Duda MK, O’shea KM, Lei B, et al.: Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction. J Card Fail 2008, 14:327–335.

    Article  PubMed  CAS  Google Scholar 

  31. Labinskyy V, Bellomo M, Chandler MP, et al.: Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J Pharmacol Exp Ther 2007, 321:165–171.

    Article  PubMed  CAS  Google Scholar 

  32. Kronenberg MW, Cohen GI, Leonen MF, et al.: Myocardial oxidative metabolic supply-demand relationships in patients with nonischemic dilated cardiomyopathy. J Nucl Cardiol 2006, 13:544–553.

    Article  PubMed  Google Scholar 

  33. Lindner O, Sorensen J, Vogt J, et al.: Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy. J Nucl Med 2006, 47:378–383.

    PubMed  Google Scholar 

  34. Young ME, McNulty P, Taegtmeyer H: Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circulation 2002, 105:1861–1870.

    Article  PubMed  CAS  Google Scholar 

  35. Peterson LR, Herrero P, Schechtman KB, et al.: Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004, 109:2191–2196.

    Article  PubMed  Google Scholar 

  36. Herrero P, Peterson LR, McGill JB, et al.: Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 2006, 47:598–604.

    Article  PubMed  CAS  Google Scholar 

  37. Brandt JM, Djouadi F, Kelly DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 1998, 273:23786–23792.

    Article  PubMed  CAS  Google Scholar 

  38. Finck BN, Han X, Courtois M, et al.: A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003, 100:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  39. Peterson LR, Herrero P, McGill J, et al.: Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 2008, 57:32–40.

    Article  PubMed  CAS  Google Scholar 

  40. Herrero P, McGill J, Lesniak DS, et al.: PET detection of the impact of dobutamine on myocardial glucose metabolism in women with type 1 diabetes mellitus. J Nucl Cardiol 2008, 15:791–799.

    PubMed  Google Scholar 

  41. Herrero P, Dence CS, Coggan AR, et al.: L-3-11C-lactate as a PET tracer of myocardial lactate metabolism: a feasibility study. J Nucl Med 2007, 48:2046–2055.

    Article  PubMed  CAS  Google Scholar 

  42. Peterson LR, Soto PF, Herrero P, et al.: Sex differences in myocardial oxygen and glucose metabolism. J Nucl Cardiol 2007, 14:573–581.

    Article  PubMed  Google Scholar 

  43. Soto PF, Herrero P, Kates AM, et al.: Impact of aging on myocardial metabolic response to dobutamine. Am J Physiol 2003, 285:H2158–H2164.

    CAS  Google Scholar 

  44. Kates AM, Herrero P, Dence C, et al.: Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol 2003, 41:293–299.

    Article  PubMed  CAS  Google Scholar 

  45. de las Fuentes L, Soto PF, Cupps BP, et al.: Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol 2006, 13:369–377.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond R. Russell III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, R.R. Myocardial metabolic imaging: Viability and beyond. curr cardiovasc imaging rep 2, 223–229 (2009). https://doi.org/10.1007/s12410-009-0027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0027-4

Keywords

Navigation