Skip to main content
Log in

Imaging of vulnerable plaque: Potential breakthrough or pipe dream?

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Atherosclerotic plaque rupture is the main cause of acute cardiac events. The detection of these unstable plaques before rupture is clinically very important, and recently there have been considerable efforts to develop imaging methods for plaque visualization and characterization. It is likely that multiple approaches are needed, from simple screening tests to advanced invasive imaging studies. The strength of nuclear imaging techniques is the outstanding sensitivity. Although the spatial resolution of clinical nuclear imaging does not allow anatomical characterization of plaques, the recent hybrid imaging techniques offer possibility for combined anatomical and molecular imaging. We discuss the current progress on nuclear imaging techniques in assessing unstable plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 2003, 108:1772–1778.

    Article  PubMed  Google Scholar 

  2. Stamper D, Weissman NJ, Brezinski M: Plaque characterization with optical coherence tomography. J Am Coll Cardiol 2006, 47:C69–C79.

    Article  PubMed  Google Scholar 

  3. Stein PD, Yaekoub AY, Matta F, et al.: 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med 2008, 121:715–725.

    Article  PubMed  Google Scholar 

  4. Schaar JA, Mastik F, Regar E, et al.: Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007, 13:995–1001.

    Article  PubMed  CAS  Google Scholar 

  5. Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 2003, 108:1664–1672.

    Article  PubMed  Google Scholar 

  6. Narula J, Garg P, Achenbach S, et al.: Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 2):S2–S10.

    Article  PubMed  Google Scholar 

  7. Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006, 47:C7–C12.

    Article  PubMed  CAS  Google Scholar 

  8. Pletcher MJ, Tice JA, Pignone M, et al.: Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 2004, 164:1285–1292.

    Article  PubMed  Google Scholar 

  9. Goldstein JA, Demetriou D, Grines CL, et al.: Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000, 343:915–922.

    Article  PubMed  CAS  Google Scholar 

  10. Naghavi M, Falk E, Hecht HS, et al.: From vulnerable plaque to vulnerable patient—part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol 2006, 98:2H–15H.

    Article  PubMed  Google Scholar 

  11. Dalager S, Falk E, Kristensen IB, et al.: Plaque in superficial femoral arteries indicates generalized atherosclerosis and vulnerability to coronary death: an autopsy study. J Vasc Surg 2008, 47:296–302.

    Article  PubMed  Google Scholar 

  12. Rudd JH, Warburton EA, Fryer TD, et al.: Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002, 105:2708–2711.

    Article  PubMed  CAS  Google Scholar 

  13. Tawakol A, Migrino RQ, Bashian GG, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006, 48:1818–1824.

    Article  PubMed  Google Scholar 

  14. Tahara N, Kai H, Ishibashi M, et al.: Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006, 48:1825–1831.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SJ, On YK, Lee EJ, et al.: Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 2008, 49:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  16. Rudd JH, Myers KS, Bansilal S, et al.: (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007, 50:892–896.

    Article  PubMed  Google Scholar 

  17. Rudd JH, Myers KS, Bansilal S, et al.: Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008, 49:871–878.

    Article  PubMed  Google Scholar 

  18. Laitinen I, Marjamäki P, Haaparanta M, et al.: Non-specific binding of [(18)F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 2006, 33:1461–1467.

    Article  PubMed  CAS  Google Scholar 

  19. Laurberg JM, Olsen AK, Hansen SB, et al.: Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis 2007, 192:275–282.

    Article  PubMed  CAS  Google Scholar 

  20. Matter CM, Wyss MT, Meier P, et al.: 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006, 26:584–589.

    Article  PubMed  CAS  Google Scholar 

  21. Bucerius J, Schmaljohann J, Bohm I, et al.: Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans—first results. Eur J Nucl Med Mol Imaging 2008, 35:815–820.

    Article  PubMed  Google Scholar 

  22. Tekabe Y, Li Q, Rosario R, et al.: Development of receptor for advanced glycation end products-directed imaging of atherosclerotic plaque in a murine model of spontaneous atherosclerosis. Circ Cardiovasc Imaging 2008, 1:212–219.

    Article  Google Scholar 

  23. Hoppela E, Kankaanpää M, Parkkola R, et al.: Imaging of human inflammatory plaques using [11C]-PK11195 and [18F]-FDG [abstract]. J Nucl Cardiol 2007, 14:2.

    Article  Google Scholar 

  24. Laitinen I, Marjamaki P, Nagren K, et al.: Uptake of inflammatory cell marker [(11)C]PK11195 into mouse atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2009, 36:73–80.

    Article  PubMed  CAS  Google Scholar 

  25. Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387.

    Article  PubMed  CAS  Google Scholar 

  26. Kircher MF, Grimm J, Swirski FK, et al.: Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 2008, 117:388–395.

    Article  PubMed  Google Scholar 

  27. Hartung D, Petrov A, Haider N, et al.: Radiolabeled monocyte chemotactic protein 1 for the detection of inflammation in experimental atherosclerosis. J Nucl Med 2007, 48:1816–1821.

    Article  PubMed  Google Scholar 

  28. Annovazzi A, Bonanno E, Arca M, et al.: 99mTc-interleukin-2 scintigraphy for the in vivo imaging of vulnerable atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2006, 33:117–126.

    Article  PubMed  CAS  Google Scholar 

  29. Broisat A, Riou LM, Ardisson V, et al.: Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p. Eur J Nucl Med Mol Imaging 2007, 34:830–840.

    Article  PubMed  CAS  Google Scholar 

  30. Nahrendorf M, Keliher E, Panizzi P, et al.: VCAM-1 targeted PET-CT detects inflammatory atherosclerotic plaques [abstract 5788]. Circulation 2008, 118:S_102.

    Google Scholar 

  31. Schafers M, Riemann B, Kopka K, et al.: Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004, 109:2554–2559.

    Article  PubMed  Google Scholar 

  32. Fujimoto S, Hartung D, Ohshima S, et al.: Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol 2008, 52:1847–1857.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang J, Nie L, Razavian M, et al.: Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 2008, 118:1953–1960.

    Article  PubMed  CAS  Google Scholar 

  34. Nahrendorf M, Sosnovik D, Chen JW, et al.: Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008, 117:1153–1160.

    Article  PubMed  CAS  Google Scholar 

  35. Isobe S, Tsimikas S, Zhou J, et al.: Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J Nucl Med 2006, 47:1497–1505.

    PubMed  CAS  Google Scholar 

  36. Sarai M, Hartung D, Petrov A, et al.: Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 2007, 50:2305–2312.

    Article  PubMed  CAS  Google Scholar 

  37. Hermann S, Kuhlmann M, Faust A, et al.: Imaging of intracellular caspase-3 to visualize apoptosis [presentation 0154]. Presented at the World Molecular Imaging Congress. Nice, France; September 10–13, 2008.

  38. Waldeck J, Hager F, Holtke C, et al.: Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an {alpha}v{beta}3 integrin-targeted fluorochrome. J Nucl Med 2008, 49:1845–1851.

    Article  PubMed  Google Scholar 

  39. Burtea C, Laurent S, Murariu O, et al.: Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res 2008, 78:148–157.

    Article  PubMed  CAS  Google Scholar 

  40. Hua J, Dobrucki LW, Sadeghi MM, et al.: Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 2005, 111:3255–3260.

    Article  PubMed  CAS  Google Scholar 

  41. Saraste A, Laitinen I, Poethko T, et al.: Evaluation of [18F]-galacto-RGD, a PET tracer for imaging alpha(v)beta3 integrin, for detection of atherosclerotic plaques in mouse model [presentation 39]. Presented at the Annual Congress of the European Association of Nuclear Medicine. Munich, Germany; October 12–15, 2008. Eur J Nucl Med Mol Imaging 2008, 35 (Suppl 2):S131.

  42. Ishino S, Mukai T, Kuge Y, et al.: Targeting of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) with 99mTc-labeled anti-LOX-1 antibody: potential agent for imaging of vulnerable plaque. J Nucl Med 2008, 49:1677–1685.

    Article  PubMed  CAS  Google Scholar 

  43. Schulz C, Penz S, Hoffmann C, et al.: Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 2008, 103:356–367.

    Article  PubMed  CAS  Google Scholar 

  44. Elmaleh DR, Fischman AJ, Tawakol A, et al.: Detection of inflamed atherosclerotic lesions with diadenosine-5′,5‴-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography. Proc Natl Acad Sci U S A 2006, 103:15992–15996.

    Article  PubMed  CAS  Google Scholar 

  45. von Lukowicz T, Silacci M, Wyss MT, et al.: Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques ex vivo. J Nucl Med 2007, 48:582–587.

    Article  Google Scholar 

  46. Mulder WJ, Cormode DP, Hak S, et al.: Multimodality nanotracers for cardiovascular applications. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 2):S103–S111.

    Article  Google Scholar 

  47. Soret M, Bacharach SL, Buvat I: Partial-volume effect in PET tumor imaging. J Nucl Med 2007, 48:932–945.

    Article  PubMed  Google Scholar 

  48. Kokki T, Teräs M, Sipilä HT, et al.: Dual gating method for eliminating motion-related inaccuracies in cardiac PET [presentation M19–231]. Presented at the 2007 IEEE Medical Imaging Conference. Hawaii; October 27 to November 3, 2007.

  49. Martinez-Möller A, Zikic D, Botnar RM, et al.: Dual cardiac-respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 2007, 34:1447–1454.

    Article  PubMed  Google Scholar 

  50. Park SJ, Ionascu D, Killoran J, et al.: Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 2008, 53:3661–3679.

    Article  PubMed  Google Scholar 

  51. Ogawa M, Ishino S, Mukai T, et al.: (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004, 45:1245–1250.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhani Knuuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitinen, I., Knuuti, J. Imaging of vulnerable plaque: Potential breakthrough or pipe dream?. curr cardiovasc imaging rep 2, 167–175 (2009). https://doi.org/10.1007/s12410-009-0021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0021-x

Keywords

Navigation