Skip to main content

Advertisement

Log in

Noninvasive monitoring of myocardial angiogenesis

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Angiogenesis plays an important role in the pathophysiology of atherosclerosis and after myocardial infarction. Furthermore, angiogenesis has been the focus of many therapeutic strategies. In view of that, a direct and clear understanding of the role of these pathways in the living subject is needed. Molecular imaging has emerged as a powerful tool to study biological processes noninvasively. This review presents and discusses evidence on the feasibility of different molecular imaging strategies to study the involvement of angiogenic pathways in the assessment of the atherosclerotic disease and as a tool to assess angiogenic therapy. Focus is placed on imaging modalities with the potential to be translated to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schaper W: Angiogenesis in the adult heart. Basic Res Cardiol 1991, 86(Suppl 2):51–56.

    PubMed  Google Scholar 

  2. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  3. Shchors K, Evan G: Tumor angiogenesis: cause or consequence of cancer? Cancer Res 2007, 67:7059–7061.

    Article  PubMed  CAS  Google Scholar 

  4. Bergers G, Benjamin LE: Tumorigenesis and the angiogenic s witch. Nat Rev 2003, 3:401–410.

    CAS  Google Scholar 

  5. Nyberg P, Xie L, Kalluri R: Endogenous inhibitors of angiogenesis. Cancer Res 2005, 65:3967–3979.

    Article  PubMed  CAS  Google Scholar 

  6. Herbst RS, Fidler IJ: Angiogenesis and lung cancer: potential for therapy. Clin Cancer Res 2000, 6:4604–4606.

    Article  PubMed  CAS  Google Scholar 

  7. Shih T, Lindley C: Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006, 28:1779–1802.

    Article  PubMed  CAS  Google Scholar 

  8. Verhoef C, de Wilt JH, Verheul HM: Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr Pharm Des 2006, 12:2623–2630.

    Article  PubMed  CAS  Google Scholar 

  9. Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 2002, 105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  10. Herrmann J, Lerman LO, Mukhopadhyay D, et al.: Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol 2006, 26:1948–1957.

    Article  PubMed  CAS  Google Scholar 

  11. Herrmann J, Lerman A: Atherosclerosis in the back yard. J Am Coll Cardiol 2007, 49:2102–2104.

    Article  PubMed  Google Scholar 

  12. Hobbs SK, Monsky WL, Yuan F, et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998, 95:4607–4612.

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez-Porcel M, Lerman A, Herrmann J, et al.: Hypertension exacerbates the effect of hypercholesterolemia on the myocardial microvasculature. Cardiovasc Res 2003, 58:213–221.

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez-Porcel M, Lerman A, Best PJ, et al.: Hypercholesterolemia impairs myocardial perfusion and permeability: role of oxidative stress and endogenous scavenging activity. J Am Coll Cardiol 2001, 37:608–615.

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez-Porcel M, Herrman J, Chade AR, et al.: Long-term antioxidant intervention improves myocardial microvascular function in experimental hypertension. Hypertension 2004, 43:493–498.

    Article  PubMed  CAS  Google Scholar 

  16. Bonetti PO, Wilson SH, Rodriguez-Porcel M, et al.: Simvastatin preserves myocardial perfusion and coronary microvascular permeability in experimental hypercholesterolemia independent of lipid lowering. J Am Coll Cardiol 2002, 40:546–554.

    Article  PubMed  CAS  Google Scholar 

  17. Nian M, Lee P, Khaper N, Liu P: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004, 94:1543–1553.

    Article  PubMed  CAS  Google Scholar 

  18. Tiyyagura SR, Pinney SP: Left ventricular remodeling after myocardial infarction: past, present, and future. Mt Sinai J Med 2006, 73:840–851.

    PubMed  Google Scholar 

  19. Sutton MG, Sharpe N: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000, 101:2981–2988.

    PubMed  CAS  Google Scholar 

  20. Dietz R, Osterziel KJ, Willenbrock R, et al.: Ventricular remodeling after acute myocardial infarction. Thromb Haemost 1999, 82(Suppl 1):73–75.

    PubMed  Google Scholar 

  21. Lee SH, Wolf PL, Escudero R, et al.: Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 2000, 342:626–633.

    Article  PubMed  CAS  Google Scholar 

  22. Hojo Y, Ikeda U, Zhu Y, et al.: Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J Am Coll Cardiol 2000, 35:968–973.

    Article  PubMed  CAS  Google Scholar 

  23. Nawata J, Ohno I, Isoyama S, et al.: Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 1999, 43:371–381.

    Article  PubMed  CAS  Google Scholar 

  24. Alghisi GC, Ruegg C: Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 2006, 13:113–135.

    Article  PubMed  CAS  Google Scholar 

  25. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999, 285:1028–1032.

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz MA: Integrin signaling revisited. Trends Cell Biol 2001, 11:466–470.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrara N: VEGF and the quest for tumour angiogenesis factors. Nat Rev 2002, 2:795–803.

    CAS  Google Scholar 

  28. Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004, 25:581–611.

    Article  PubMed  CAS  Google Scholar 

  29. Cai W, Chen X: Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007, 12:4267–4279.

    Article  PubMed  CAS  Google Scholar 

  30. Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005, 23:1011–1027.

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto N, Kohmoto T, Gu A, et al.: Angiogenesis is enhanced in ischemic canine myocardium by transmyocardial laser revascularization. J Am Coll Cardiol 1998, 31:1426–1433.

    Article  PubMed  CAS  Google Scholar 

  32. Losordo DW, Vale PR, Symes JF, et al.: Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998, 98:2800–2804.

    PubMed  CAS  Google Scholar 

  33. Vatner SF: FGF induces hypertrophy and angiogenesis in hibernating myocardium. Circ Res 2005, 96:705–707.

    Article  PubMed  CAS  Google Scholar 

  34. Tse HF, Kwong YL, Chan JK, et al.: Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003, 361:47–49.

    Article  PubMed  Google Scholar 

  35. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994, 264:569–571.

    Article  PubMed  CAS  Google Scholar 

  36. Sadeghi MM, Krassilnikova S, Zhang J, et al.: Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 2004, 110:84–90.

    Article  PubMed  CAS  Google Scholar 

  37. Meoli DF, Sadeghi MM, Krassilnikova S, et al.: Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004, 113:1684–1691.

    PubMed  CAS  Google Scholar 

  38. Kalinowski L, Dobrucki LW, Meoli DF, et al.: Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. J Appl Physiol 2008, 104:1504–1512.

    Article  PubMed  CAS  Google Scholar 

  39. Hua J, Dobrucki LW, Sadeghi MM, et al.: Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 2005, 111:3255–3260.

    Article  PubMed  CAS  Google Scholar 

  40. Lee KH, Jung KH, Song SH, et al.: Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med 2005, 46:472–478.

    Article  PubMed  CAS  Google Scholar 

  41. Leong-Poi H, Christiansen J, Heppner P, et al.: Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 2005, 111:3248–3254.

    Article  PubMed  CAS  Google Scholar 

  42. Cai W, Chen K, Mohamedali KA, et al.: PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006, 47:2048–2056.

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez-Porcel M, Cai W, Gheysens O, et al.: Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 2008, 49:667–673.

    Article  PubMed  Google Scholar 

  44. Lu E, Wagner WR, Schellenberger U, et al.: Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 2003, 108:97–103.

    Article  PubMed  CAS  Google Scholar 

  45. Willmann JK, Chen K, Wang H, et al.: Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 2008, 117:915–922.

    Article  PubMed  CAS  Google Scholar 

  46. Massoud TF, Gambhir SS: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003, 17:545–580.

    Article  PubMed  CAS  Google Scholar 

  47. Wu JC, Tseng JR, Gambhir SS: Molecular imaging of cardiovascular gene products. J Nucl Cardiol 2004, 11:491–505.

    Article  PubMed  Google Scholar 

  48. Wu JC, Chen IY, Wang Y, et al.: Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 2004, 110:685–691.

    Article  PubMed  CAS  Google Scholar 

  49. Wagner B, Anton M, Nekolla SG, et al.: Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. J Am Coll Cardiol 2006, 48:2107–2115.

    Article  PubMed  Google Scholar 

  50. Ferrara N, Gerber HP: The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001, 106:148–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rodriguez-Porcel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Porcel, M. Noninvasive monitoring of myocardial angiogenesis. curr cardiovasc imaging rep 2, 59–66 (2009). https://doi.org/10.1007/s12410-009-0008-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-0008-7

Keywords

Navigation