Skip to main content
Log in

Echocardiographic assessment of coronary flow velocity and coronary flow velocity reserve in ischemic cardiac disease

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Noninvasive measurement of coronary flow velocity (CFV) using transthoracic Doppler echocardiography has become increasingly popular in clinical cardiology due to its simplicity, versatility, and high feasibility. Baseline CFV profile provides much useful information regarding the prediction of severe proximal coronary stenosis and residual myocardial viability. Calculation of coronary flow velocity reserve (CFVR) provides an objective cutoff value (CFVR < 2) to predict the presence of functionally significant coronary stenosis proximal to the recording site. This approach is especially useful in patients with intermediate stenosis and those who have undergone percutaneous coronary interventions. In some cases, CFVR measurements may also predict future cardiac events. This article reviews CFV/CFVR measurement and its clinically relevant value using echocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kern M, de Bruyne B, Pijls N: From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol 1997, 30:613–620.

    Article  PubMed  CAS  Google Scholar 

  2. Kern M: Coronary physiology revisited: practical insights from the cardiac catheterization laboratory. Circulation 2000, 101:1344–1351.

    PubMed  CAS  Google Scholar 

  3. Iliceto S, Marangelli V, Memmola C, Rizzon P: Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamoleinduced coronary vasodilation. Circulation 1991, 83:61–69.

    PubMed  CAS  Google Scholar 

  4. Fusejima K: Noninvasive measurement of coronary artery blood flow using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 1987, 10:1024–1031.

    Article  PubMed  CAS  Google Scholar 

  5. Kenny A, Shapiro L: Transthoracic high-frequency two-dimensional echocardiography, Doppler and color flow mapping to determine anatomy and blood flow patterns in the distal left anterior descending coronary artery. Am J Cardiol 1992, 69:1265–1268.

    Article  PubMed  CAS  Google Scholar 

  6. Minagoe S, Toyama Y, Niizoe K, et al.: Transthoracic Doppler echocardiographic detection of intramyocardial coronary artery flow in humans using high frequency transducer. J Cardiol 1997, 30:149–155.

    PubMed  CAS  Google Scholar 

  7. Caiati C, Montaldo C, Zedda N, et al.: New noninvasive method for coronary flow reserve assessment: contrastenhanced transthoracic second harmonic echo Doppler. Circulation 1999, 99: 771–778.

    PubMed  CAS  Google Scholar 

  8. Caiati C, Zedda N, Montaldo C, et al.: Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J Am Coll Cardiol 1999, 34:122–130.

    Article  PubMed  CAS  Google Scholar 

  9. Caiati C, Montaldo C, Zedda N, et al.: Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol 1999, 34:1193–1200.

    Article  PubMed  CAS  Google Scholar 

  10. Hozumi T, Yoshida K, Ogata Y, et al.: Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 1998, 97: 1557–1562.

    PubMed  CAS  Google Scholar 

  11. Hozumi T, Yoshida K, Akasaka T, et al.: Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 1998, 32:1251–1259.

    Article  PubMed  CAS  Google Scholar 

  12. Voci P, Testa G, Plaustro G: Imaging of the distal left anterior descending coronary artery by transthoracic color-Doppler echocardiography. Am J Cardiol 1998, 81:74G–78G.

    Article  PubMed  CAS  Google Scholar 

  13. Voci P, Pizzuto F, Mariano E, et al.: Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol 2002, 90:988–991.

    Article  PubMed  Google Scholar 

  14. Takeuchi M, Ogawa K, Wake R, et al.: Measurement of coronary flow velocity reserve in the posterior descending coronary artery by contrast-enhanced transthoracic Doppler echocardiography. J Am Soc Echocardiogr 2004, 17:21–27.

    Article  PubMed  Google Scholar 

  15. Ueno Y, Nakamura Y, Kinoshita M, et al.: Noninvasive assessment of significant right coronary artery stenosis based on coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography. Echocardiography 2003, 20:495–501.

    Article  PubMed  Google Scholar 

  16. Murata E, Hozumi T, Matsumura Y, et al.: Coronary flow velocity reserve measurement in three major coronary arteries using transthoracic Doppler echocardiography. Echocardiography 2006, 23:279–286.

    Article  PubMed  Google Scholar 

  17. Watanabe H, Hozumi T, Hirata K, et al.: Noninvasive coronary flow velocity reserve measurement in the posterior descending coronary artery for detecting coronary stenosis in the right coronary artery using contrast-enhanced transthoracic Doppler echocardiography. Echocardiography 2004, 21:225–233.

    Article  PubMed  Google Scholar 

  18. Daimon M, Watanabe H, Yamagishi H, et al.: Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single piston emission computed tomography. J Am Coll Cardiol 2001, 37:1310–1315.

    Article  PubMed  CAS  Google Scholar 

  19. Okayama H, Sumimoto T, Hiasa G, et al.: Usefulness of an echo-contrast agent for assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery with transthoracic Doppler scan echocardiography. Am Heart J 2002, 143:668–675.

    Article  PubMed  Google Scholar 

  20. Ueno Y, Nakamura Y, Takashima H, et al.: Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 2002, 15:1074–1079.

    Article  PubMed  Google Scholar 

  21. Lim H, Shim W, Rhee H, et al.: Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 2000, 13:264–270.

    Article  PubMed  CAS  Google Scholar 

  22. Hozumi T, Yoshida K, Akasaka T, et al.: Value of acceleration flow and the prestenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 2000, 35:164–168.

    Article  PubMed  CAS  Google Scholar 

  23. Izumi C, Takahashi S, Kurozumi K, et al.: Usefulness of high-frequency transthoracic Doppler echocardiography in noninvasive diagnosis of the left internal thoracic artery graft stenosis at the anastomosis. Circ J 2004, 68:845–849.

    Article  PubMed  Google Scholar 

  24. Mizukami N, Minagoe S, Otsuji Y, et al.: Noninvasive quantitative evaluation of the patency of internal mammary artery grafts to the left anterior descending coronary artery by transthoracic Doppler echocardiography. J Cardiol 2006, 48:305–314.

    PubMed  Google Scholar 

  25. Watanabe N, Akasaka T, Yamaura Y, et al.: Noninvasive detection of total occlusion of the left anterior descending coronary artery with transthoracic Doppler echocardiography. J Am Coll Cardiol 2001, 38:1328–1332.

    Article  PubMed  CAS  Google Scholar 

  26. Otsuka R, Watanabe H, Hirata K, et al.: A novel technique to detect total occlusion in the right coronary artery using retrograde flow by transthoracic Doppler echocardiography. J Am Soc Echocardiogr 2005, 18:704–709.

    Article  PubMed  Google Scholar 

  27. Hirata K, Watanabe H, Hozumi T, et al.: Simple detection of occluded coronary artery using retrograde flow in septal branch and left anterior descending coronary artery by transthoracic Doppler echocardiography at rest. J Am Soc Echocardiogr 2004, 17:108–113.

    Article  PubMed  Google Scholar 

  28. Higashiue S, Watanabe H, Yokoi Y, et al.: Simple detection of severe coronary stenosis using transthoracic Doppler echocardiography at rest. Am J Cardiol 2001, 87:1064–1068.

    Article  PubMed  CAS  Google Scholar 

  29. Nohtomi Y, Takeuchi M, Nagasawa K, et al.: Persistence of systolic coronary flow reversal predicts irreversible dysfunction after reperfused anterior myocardial infarction. Heart 2003, 89:382–388.

    Article  PubMed  CAS  Google Scholar 

  30. Hozumi T, Kanzaki Y, Ueda Y, et al.: Coronary flow velocity analysis during short term follow up after coronary reperfusion: use of transthoracic Doppler echocardiography to predict regional wall motion recovery in patients with acute myocardial infarction. Heart 2003, 89:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  31. Shintani Y, Ito H, Iwakura K, et al.: Prediction of wall motion recovery from the left anterior descending coronary artery velocity pattern recorded by transthoracic Doppler echocardiography in patients with anterior wall myocardial infarction retrospective and prospective studies. Jpn Circ J 2001, 65:717–722.

    Article  PubMed  CAS  Google Scholar 

  32. Lee S, Otsuji Y, Minagoe S, et al.: Noninvasive evaluation of coronary reperfusion by transthoracic Doppler echocardiography in patients with anterior acute myocardial infarction before coronary intervention. Circulation 2003, 108:2763–2768.

    Article  PubMed  Google Scholar 

  33. Voci P, Pizzuto F, Romeo F: Coronary flow: a new asset for the echo lab? Eur Heart J 2004, 25:1867–1879.

    Article  PubMed  Google Scholar 

  34. Gould K, Lipscomb K, Hamilton G: Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974, 33:87–94.

    Article  PubMed  CAS  Google Scholar 

  35. Gould K, Lipscomb K: Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974, 34:48–55.

    Article  PubMed  CAS  Google Scholar 

  36. Takeuchi M, Yoshitani H, Otani S, Yoshikawa J: Direct demonstration by transthoracic Doppler echocardiography of adenosine-induced coronary steal in the collateral-dependent vessel. Am J Cardiol 2005, 95:1363–1366.

    Article  PubMed  Google Scholar 

  37. Miyazaki C, Takeuchi M, Yoshitani H, et al.: Optimum hypoglycemic therapy can improve coronary flow velocity reserve in diabetic patients: demonstration by transthoracic Doppler echocardiography. Circ J 2003, 67:945–950.

    Article  PubMed  Google Scholar 

  38. Fujimoto K, Hozumi T, Watanabe H, et al.: Effect of fluvastatin therapy on coronary flow reserve in patients with hypercholesterolemia. Am J Cardiol 2004, 93:1419–1421, A10.

    Article  PubMed  CAS  Google Scholar 

  39. Otsuka R, Watanabe H, Hirata K, et al.: Acute effects of passive smoking on the coronary circulation in healthy young adults. JAMA 2001, 286:436–441.

    Article  PubMed  CAS  Google Scholar 

  40. Hirata K, Shimada K, Watanabe H, et al.: Black tea increases coronary flow velocity reserve in healthy male subjects. Am J Cardiol 2004, 93:1384–1388.

    Article  PubMed  CAS  Google Scholar 

  41. Shimada K, Watanabe H, Hosoda K, et al.: Effect of red wine on coronary flow-velocity reserve. Lancet 1999, 354:1002.

    Article  PubMed  CAS  Google Scholar 

  42. Hirata K, Shimada K, Watanabe H, et al.: Modulation of coronary flow velocity reserve by gender, menstrual cycle and hormone replacement therapy. J Am Coll Cardiol 2001, 38:1879–1884.

    Article  PubMed  CAS  Google Scholar 

  43. Rigo F, Gherardi S, Galderisi M, et al.: The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 2006, 27:1319–1323.

    Article  PubMed  Google Scholar 

  44. Sugioka K, Hozumi T, Takemoto Y, et al.: Relation of early improvement in coronary flow reserve to late recovery of left ventricular function after beta-blocker therapy in patients with idiopathic dilated cardiomyopathy. Am Heart J 2007, 153: 1080.e1–1080e6.

    Article  CAS  Google Scholar 

  45. Fujimoto K, Watanabe H, Hozumi T, et al.: New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography: comparison with thallium-201 single photon emission computed tomography. J Cardiol 2004, 43:109–116.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, M., Otsuji, Y. & Lang, R.M. Echocardiographic assessment of coronary flow velocity and coronary flow velocity reserve in ischemic cardiac disease. curr cardiovasc imaging rep 1, 49–57 (2008). https://doi.org/10.1007/s12410-008-0009-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-008-0009-y

Keywords

Navigation