Skip to main content

Advertisement

Log in

Three-dimensional echocardiography: What is next?

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

The past three decades have seen echocardiography evolve into a cornerstone of modern cardiac investigation. Gradually, additional ultrasound-based techniques have been invented, investigated, and then integrated. A more recent development in echocardiography is three-dimensional imaging, which has permeated every aspect of traditional cardiac ultrasound. It is more than simply the latest addition to “standard” echocardiography and almost has developed into an independent imaging modality, encompassing gray-scale acquisitions, color Doppler, stress, contrast, and now even transesophageal imaging. Its utility in research has long been established, but more recent investigation has focused on its incorporation into daily clinical practice. This article summarizes the available techniques, puts them in a clinical context, and examines recent research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jenkins C, Bricknell K, Hanekom L, Marwick TH: Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 2004, 44:878–886.

    Google Scholar 

  2. Gutiérrez-Chico JL, Zamorano JL, Pérez de Isla L, et al.: Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies. Am J Cardiol 2005, 95:809–813.

    Article  PubMed  Google Scholar 

  3. Oe H, Hozumi T, Arai K, et al.: Comparison of accurate measurement of left ventricular mass in patients with hypertrophied hearts by real-time three-dimensional echocardiography versus magnetic resonance imaging. Am J Cardiol 2005, 95:1263–1267.

    Article  PubMed  Google Scholar 

  4. Jacobs LD, Salgo IS, Goonewardena S, et al.: Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 2006, 27:460–468.

    Article  PubMed  Google Scholar 

  5. Nikitin NP, Constantin C, Loh PH, et al.: New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur J Echocardiogr 2006, 7:365–372.

    Article  PubMed  Google Scholar 

  6. Jenkins C, Bricknell K, Chan J, et al.: Comparison of two-and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am J Cardiol 2007, 99:300–306.

    Article  PubMed  Google Scholar 

  7. Sugeng L, Mor-Avi V, Weinert L, et al.: Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006, 114:654–661.

    Article  PubMed  Google Scholar 

  8. Pouleur AC, le Polain de Waroux JB, Pasquet A, et al.: Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart 2008 94:1050–1057.

    Article  PubMed  Google Scholar 

  9. Mor-Avi V, Sugeng L, Weinert L, et al.: Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 2004, 110:1814–1818.

    Article  PubMed  Google Scholar 

  10. Ghali JK, Liao Y, Simmons B, et al.: The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med 1992, 117:831–836.

    PubMed  CAS  Google Scholar 

  11. Yap SC, van Geuns RJ, Nemes A, et al.: Rapid and accurate measurement of LV mass by biplane real-time 3D echocardiography in patients with concentric LV hypertrophy: comparison to CMR. Eur J Echocardiogr 2008, 9:255–260.

    PubMed  Google Scholar 

  12. Hare JL, Jenkins C, Nakatani S, et al.: Feasibility and clinical decision-making with 3D echocardiography in routine practice. Heart 2008, 94:440–445.

    Article  PubMed  CAS  Google Scholar 

  13. Chung ES, León AR, Tavazzi L, et al.: Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 2008, 117:2608–2616.

    Article  PubMed  Google Scholar 

  14. Kapetanakis S, Kearney MT, Siva A, et al.: Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 2005, 112:992–1000.

    Article  PubMed  CAS  Google Scholar 

  15. Takeuchi M, Jacobs A, Sugeng L, et al.: Assessment of left ventricular dyssynchrony with real-time 3-dimensional echocardiography: comparison with Doppler tissue imaging. J Am Soc Echocardiogr 2007, 20:1321–1329.

    Article  PubMed  Google Scholar 

  16. Marsan NA, Henneman MM, Chen J, et al.: Real-time 3-dimensional echocardiography as a novel approach to quantify left ventricular dyssynchrony: a comparison study with phase analysis of gated myocardial perfusion single photon emission computed tomography. J Am Soc Echocardiogr 2008, 21:801–807.

    Article  PubMed  Google Scholar 

  17. Marsan NA, Bleeker GB, Ypenburg C, et al.: Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2008, 19:392–399.

    Article  PubMed  Google Scholar 

  18. Burgess MI, Jenkins C, Chan J, Marwick TH: Measurement of left ventricular dyssynchrony in patients with ischaemic cardiomyopathy: a comparison of real-time three-dimensional and tissue Doppler echocardiography. Heart 2007, 93:1191–1196.

    Article  PubMed  Google Scholar 

  19. Kapetanakis SB, Monaghan MJ: Tissue motion quantification post MI: a comparison of speckle-tracking derived strain with coronary angiography [abstract 672]. Eur J Echocardiogr 2007, 8(Suppl 1):S97.

    Google Scholar 

  20. Ahmad M, Xie T, McCulloch M, et al.: Real-time three-dimensional dobutamine stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol 2001, 37:1303–1309.

    Article  PubMed  CAS  Google Scholar 

  21. Walimbe V, Garcia M, Lalude O, et al.: Quantitative realtime 3-dimensional stress echocardiography: a preliminary investigation of feasibility and effectiveness. J Am Soc Echocardiogr 2007, 20:13–22.

    Article  PubMed  Google Scholar 

  22. Ahmad M, Dimaano M, Xie C: Contraction front mapping in estimation of ischemic burden during live 3-dimensional dobutamine stress echocardiography [abstract 1866]. Circulation 2007, 116:II399.

    Google Scholar 

  23. Matsumura Y, Hozumi T, Arai K, et al.: Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur Heart J 2005, 26:1625–1632.

    Article  PubMed  Google Scholar 

  24. Takeuchi M, Otani S, Weinert L, et al.: Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocardiography for detecting stress-induced wall-motion abnormalities. J Am Soc Echocardiogr 2006, 19:294–299.

    Article  PubMed  Google Scholar 

  25. Bhan A, Kapetanakis S, Rana BS, et al.: Real-time three-dimensional myocardial contrast echocardiography: is it clinically feasible? Eur J Echocardiogr 2008 (Epub ahead of print).

  26. Haddad F, Doyle R, Murphy DJ, Hunt SA: Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117:1717–1731.

    Article  PubMed  Google Scholar 

  27. Chen G, Sun K, Huang G: In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography 2006, 23:395–399.

    Article  PubMed  Google Scholar 

  28. Prakasa KR, Dalal D, Wang J, et al.: Feasibility and variability of three dimensional echocardiography in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol 2006, 97:703–709.

    Article  PubMed  Google Scholar 

  29. Jenkins C, Chan J, Bricknell K, et al.: Reproducibility of right ventricular volumes and ejection fraction using realtime three-dimensional echocardiography: comparison with cardiac MRI. Chest 2007, 131:1844–1851.

    Article  PubMed  Google Scholar 

  30. Sugeng L, Weinert L, Niel J, et al.: Multi-modality comparison of volumetric quantification of right ventricular volumes using a novel semi-automated border detection software [abstract 1961]. Circulation 2007, 116:II422–II423.

    Google Scholar 

  31. Grison A, Maschietto N, Reffo E, et al.: Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr 2007, 20:921–929.

    Article  PubMed  Google Scholar 

  32. Scheurer M, Bandisode V, Ruff P, et al.: Early experience with real-time three-dimensional echocardiographic guidance of right ventricular biopsy in children. Echocardiography 2006, 23:45–49.

    Article  PubMed  Google Scholar 

  33. Baklanov DV, de Muinck ED, Simons M, et al.: Live 3D echo guidance of catheter-based endomyocardial injection. Catheter Cardiovasc Interv 2005, 65:340–345.

    Article  PubMed  Google Scholar 

  34. Abhayaratna WP, Seward JB, Appleton CP, et al.: Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol 2006, 47:2357–2363.

    Article  PubMed  Google Scholar 

  35. Lester SJ, Ryan EW, Schiller NB, Foster E: Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol 1999, 84:829–832.

    Article  PubMed  CAS  Google Scholar 

  36. Anwar AM, Soliman OI, Geleijnse ML, et al.: Assessment of left atrial volume and function by real-time three-dimensional echocardiography. Int J Cardiol 2008, 123:155–161.

    Article  PubMed  Google Scholar 

  37. Jenkins C, Bricknell K, Marwick TH: Use of real-time three-dimensional echocardiography to measure left atrial volume: comparison with other echocardiographic techniques. J Am Soc Echocardiogr 2005, 18:991–997.

    Article  PubMed  Google Scholar 

  38. Suh IW, Song JM, Lee EY, et al.: Left atrial volume measured by real-time 3-dimensional echocardiography predicts clinical outcomes in patients with severe left ventricular dysfunction and in sinus rhythm. J Am Soc Echocardiogr 2008, 21:439–445.

    Article  PubMed  Google Scholar 

  39. Levine RA, Handschumacher MD, Sanfilippo AJ, et al.: Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 1989, 80:589–598.

    PubMed  CAS  Google Scholar 

  40. Rana BS, Wendler O, Desai J, et al.: Is there a role for three dimensional transthoracic echocardiography in the preoperative assessment of the mitral valve? [abstract 3187] Circulation 2007, 116:II716.

    Google Scholar 

  41. Gutiérrez-Chico JL, Zamorano Gómez JL, Rodrigo-López JL, et al.: Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse. Is transesophageal echocardiography still mandatory? Am Heart J 2008, 155:694–698.

    Article  PubMed  Google Scholar 

  42. Goland S, Trento A, Iida K, et al.: Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart 2007, 93:801–807.

    Article  PubMed  Google Scholar 

  43. Chan KL, Liu X, Ascah KJ, et al.: Comparison of real-time 3-dimensional echocardiography with conventional 2-dimensional echocardiography in the assessment of structural heart disease. J Am Soc Echocardiogr 2004, 17:976–980.

    Article  PubMed  Google Scholar 

  44. Song JM, Kim MJ, Kim YJ, et al.: Three-dimensional characteristics of functional mitral regurgitation in patients with severe left ventricular dysfunction: a real-time three-dimensional colour Doppler echocardiography study. Heart 2008, 94:590–596.

    Article  PubMed  Google Scholar 

  45. Matsumura Y, Fukuda S, Tran H, et al.: Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008, 155:231–238.

    Article  PubMed  Google Scholar 

  46. Park YH, Song JM, Lee EY, et al.: Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol 2008, 124:160–165.

    Article  PubMed  Google Scholar 

  47. Little SH, Igo SR, Pirat B, et al.: In vitro validation of realtime three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 2007, 99:1440–1447.

    Article  PubMed  Google Scholar 

  48. Lodato JA, Weinert L, Baumann R, et al.: Use of 3-dimensional color Doppler echocardiography to measure stroke volume in human beings: comparison with thermodilution. J Am Soc Echocardiogr 2007, 20:103–112.

    Article  PubMed  Google Scholar 

  49. Pemberton J, Li X, Kenny A, et al.: Real-time 3-dimensional Doppler echocardiography for the assessment of stroke volume: an in vivo human study compared with standard 2-dimensional echocardiography. J Am Soc Echocardiogr 2005, 18:1030–1036.

    Article  PubMed  Google Scholar 

  50. Poh KK, Levine RA, Solis J, et al.: Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. Eur Heart J 2008 (Epub ahead of print).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Monaghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhan, A., Kapetanakis, S. & Monaghan, M.J. Three-dimensional echocardiography: What is next?. curr cardiovasc imaging rep 1, 39–48 (2008). https://doi.org/10.1007/s12410-008-0008-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-008-0008-z

Keywords

Navigation