Skip to main content
Log in

Three-dimensional echocardiography in congenital heart disease

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Three-dimensional echocardiography (3DE) is a new, rapidly evolving modality for pediatric cardiac imaging. Important technological advances have heralded an era in which practical 3DE scanning is becoming a mainstream modality. This article reviews the applicability of 3DE to congenital heart defects to visualize anatomy in a spectrum of defects ranging from atrioventricular septal defects to mitral valve abnormalities and Ebstein’s anomaly. It illustrates the use of 3DE color flow to obtain echocardiographic angiograms and reviews the state of the science in quantitating right and left ventricular volumetrics. In addition, the review provides examples of novel applications including 3DE transesophageal echocardiography and image-guided interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Tajik AJ, Seward JB, Hagler DJ, et al.: Two-dimensional real-time ultrasonic imaging of the heart and great vessels. Technique, image orientation, structure identification, and validation. Mayo Clin Proc 1978, 53:271–303.

    PubMed  CAS  Google Scholar 

  2. Ariet M, Geiser EA, Lupkiewicz SM, et al.: Evaluation of a three-dimensional reconstruction to compute left ventricular volume and mass. Am J Cardiol 1984, 54 415–420.

    Article  PubMed  CAS  Google Scholar 

  3. Linker DT, Moritz WE, Pearlman AS: A new three-dimensional echocardiographic method of right ventricular volume measurement: in vitro validation. J Am Coll Cardiol 1986, 8 101–106.

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto M, Matsuo H, Kitabatake A, et al.: Three-dimensional echocardiograms and two-dimensional echocardiographic images at desired planes by a computerized system. Ultrasound Med Biol 1977, 3:163–178.

    Article  PubMed  CAS  Google Scholar 

  5. von Ramm OT, Smith SW: Real time volumetric ultrasound imaging system. J Digital Imaging 1990, 3:261–266.

    Article  Google Scholar 

  6. Salgo IS: Three-dimensional echocardiographic technology. Cardiol Clin May 2007, 25:231–239.

    Article  Google Scholar 

  7. Park SE, Shrout TR: Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 1997, 44:1140–1147.

    Article  Google Scholar 

  8. Gururaja TR, Panda RK, Chen J, et al.: Single crystal transducers for medical imaging applications. Proceedings of the 1999 Ultrasonics Symposium. Lake Tahoe, NV. IEEE 1999, 2:969–972.

    Google Scholar 

  9. Acar P, Abadir S, Paranon S, et al.: Live 3D echocardiography with the pediatric matrix probe. Echocardiography 2007, 24:750–755.

    Article  PubMed  Google Scholar 

  10. Gopal AS, Chukwu EO, Iwuchukwu CJ, et al.: Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2007, 20:445–455.

    Article  PubMed  Google Scholar 

  11. Niemann PS, Pinho L, Balbach T, et al.: Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 2007, 50:1668–1676.

    Article  PubMed  Google Scholar 

  12. Salgo IS, Gorman JH 3rd, Gorman RC, et al.: Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 2002, 106:711–717.

    Article  PubMed  Google Scholar 

  13. Watanabe N, Ogasawara Y, Yamaura Y, et al.: Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation 2005, 112(9 Suppl):I458–462.

    PubMed  Google Scholar 

  14. Pemberton J, Li X, Karamlou T, et al.: The use of live three-dimensional Doppler echocardiography in the measurement of cardiac output: an in vivo animal study. J Am Coll Cardiol 2005, 45:433–438.

    Article  PubMed  Google Scholar 

  15. Vogel M, Losch S: Dynamic three-dimensional echocardiography with a computed tomography imaging probe: initial clinical experience with transthoracic application in infants and children with congenital heart defects. Br Heart J 1994, 71:462–467.

    Article  PubMed  CAS  Google Scholar 

  16. Vogel M, Ho SY, Anderson RH: Comparison of three dimensional echocardiographic findings with anatomical specimens of various congenitally malformed hearts. Br Heart J 1995, 73:566–570.

    Article  PubMed  CAS  Google Scholar 

  17. Vogel M, Ho SY, Buhlmeyer K, Anderson RH: Assessment of congenital heart defects by dynamic three-dimensional echocardiography: methods of data acquisition and clinical potential. Acta Paediatr Suppl 1995, 410:34–39.

    Article  PubMed  CAS  Google Scholar 

  18. Espinola-Zavaleta N, Vargas-Barron J, Keirns C, et al.: Three-dimensional echocardiography in congenital malformations of the mitral valve. J Am Soc Echocardiogr 2002, 15:468–472.

    Article  PubMed  Google Scholar 

  19. Lu Q, Lu X, Xie M, et al.: Real-time three-dimensional echocardiography in assessment of congenital double orifice mitral valve. J Huazhong Univ Sci Technolog Med Sci 2006, 26:625–628.

    Article  PubMed  Google Scholar 

  20. Rawlins DB, Austin C, Simpson JM: Live three-dimensional paediatric intraoperative epicardial echocardiography as a guide to surgical repair of atrioventricular valves. Cardiol Young 2006, 16:34–39.

    Article  PubMed  Google Scholar 

  21. Seliem MA, Fedec A, Szwast A, et al.: Atrioventricular valve morphology and dynamics in congenital heart disease as imaged with real-time 3-dimensional matrix-array echocardiography: comparison with 2-dimensional imaging and surgical findings. J Am Soc Echocardiogr 2007, 20:869–876.

    Article  PubMed  Google Scholar 

  22. Vettukattil JJ, Bharucha T, Anderson RH: Defining Ebstein’s malformation using three-dimensional echocardiography. Interact Cardiovasc Thorac Surg 2007, 6:685–690.

    Article  PubMed  Google Scholar 

  23. Hlavacek AM, Chessa K, Crawford FA, et al.: Real-time three-dimensional echocardiography is useful in the evaluation of patients with atrioventricular septal defects. Echocardiography 2006, 23:225–231.

    Article  PubMed  Google Scholar 

  24. Tantengco MV, Bates JR, Ryan T, et al.: Dynamic three-dimensional echocardiographic reconstruction of congenital cardiac septation defects. Pediatr Cardiol 1997, 18:184–190.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng TO, Xie MX, Wang XF, et al.: Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am Heart J 2004, 148:1091–1095.

    Article  PubMed  Google Scholar 

  26. Mercer-Rosa L, Seliem MA, Fedec A, et al.: Illustration of the additional value of real-time 3-dimensional echocardiography to conventional transthoracic and transesophageal 2-dimensional echocardiography in imaging muscular ventricular septal defects: does this have any impact on individual patient treatment? J Am Soc Echocardiogr 2006, 19:1511–1519.

    Article  PubMed  Google Scholar 

  27. Hlavacek A, Lucas J, Baker H, et al.: Feasibility and utility of three-dimensional color flow echocardiography of the aortic arch: The “echocardiographic angiogram.”; Echocardiography 2006, 23:860–864.

    Article  PubMed  Google Scholar 

  28. Sadagopan SN, Veldtman GR, Sivaprakasam MC, et al.: Correlations with operative anatomy of real time three-dimensional echocardiographic imaging of congenital aortic valvar stenosis. Cardiol Young 2006, 16:490–494.

    Article  PubMed  Google Scholar 

  29. Bharucha T, Ho SY, Vettukattil JJ: Multiplanar review analysis of three-dimensional echocardiographic datasets gives new insights into the morphology of subaortic stenosis. Eur J Echocardiogr 2008 (Epub ahead of print).

  30. Baker GH, Pereira NL, Hlavacek AM, et al.: Transthoracic real-time three-dimensional echocardiography in the diagnosis and description of noncompaction of ventricular myocardium. Echocardiography 2006, 23:490–494.

    Article  PubMed  Google Scholar 

  31. Bu L, Munns S, Zhang H, et al.: Rapid full volume data acquisition by real-time 3-dimensional echocardiography for assessment of left ventricular indexes in children: a validation study compared with magnetic resonance imaging. J Am Soc Echocardiogr 2005, 18:299–305.

    Article  PubMed  Google Scholar 

  32. Baker GH, Flack EC, Hlavacek AM, et al.: Variability and resource utilization of bedside three-dimensional echocardiographic quantitative measurements of left ventricular volume in congenital heart disease. Congenital Heart Dis 2006, 1:318–323.

    Google Scholar 

  33. Mor-Avi V, Sugeng L, Weinert L, et al.: Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 2004, 110:1814–1818.

    Article  PubMed  Google Scholar 

  34. Caiani EG, Corsi C, Zamorano J, et al.: Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2005, 18:779–788.

    Article  PubMed  Google Scholar 

  35. Riehle TJ, Mahle WT, Parks WJ, et al.: Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2008, 21:78–83.

    Article  PubMed  Google Scholar 

  36. Kapetanakis S, Kearney MT, Siva A, et al.: Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 2005, 112:992–1000.

    Article  PubMed  CAS  Google Scholar 

  37. Baker GH, Hlavacek AM, Chessa KS, et al.: Left ventricular dysfunction is associated with intraventricular dyssynchrony by 3-dimensional echocardiography in children. J Am Soc Echocardiogr 2008, 21:230–233.

    Article  PubMed  Google Scholar 

  38. Soriano BD, Hoch M, Ithuralde A, et al.: Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle. A comparison study with cardiac magnetic resonance. Circulation 2008, 117:1842–1848.

    Article  PubMed  Google Scholar 

  39. Sugeng L, Weinert L, Lang RM: Real-time 3-dimensional color Doppler flow of mitral and tricuspid regurgitation: feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr 2007, 20:1050–1057.

    Article  PubMed  Google Scholar 

  40. Matsumura Y, Fukuda S, Tran H, et al.: Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008, 155:231–238.

    Article  PubMed  Google Scholar 

  41. Pemberton J, Hui L, Young M, et al.: Accuracy of 3-dimensional color Doppler-derived flow volumes with increasing image depth. J Ultrasound Med 2005, 24:1109–1115.

    PubMed  Google Scholar 

  42. Lodato JA, Weinert L, Baumann R, et al.: Use of 3-dimensional color Doppler echocardiography to measure stroke volume in human beings: comparison with thermodilution. J Am Soc Echocardiogr 2007, 20:103–112.

    Article  PubMed  Google Scholar 

  43. Sugeng L, Spencer KT, Mor-Avi V, et al.: Dynamic three-dimensional color flow Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography 2003, 20:265–273.

    Article  PubMed  Google Scholar 

  44. Scheurer M, Bandisode V, Ruff P, et al.: Early experience with real-time three-dimensional echocardiographic guidance of right ventricular biopsy in children. Echocardiography 2006, 23:45–49.

    Article  PubMed  Google Scholar 

  45. Suematsu Y, Martinez JF, Wolf BK, et al.: Three-dimensional echo-guided beating heart surgery without cardiopulmonary bypass: atrial septal defect closure in a swine model. J Thorac Cardiovasc Surg 2005, 130:1348–1357.

    Article  PubMed  Google Scholar 

  46. Suematsu Y, Marx GR, Stoll JA, et al.: Three-dimensional echocardiography-guided beating-heart surgery without cardiopulmonary bypass: a feasibility study. J Thorac Cardiovasc Surg 2004, 128:579–587.

    Article  PubMed  Google Scholar 

  47. Vasilyev NV, Martinez JF, Freudenthal FP, et al.: Three-dimensional echo and videocardioscopy-guided atrial septal defect closure. Ann Thorac Surg 2006, 82:1322–1326; discussion 1326.

    Article  PubMed  Google Scholar 

  48. Baker GH, Shirali GS, Bandisode V: Transseptal left heart catheterization for a patient with a prosthetic mitral valve using live three-dimensional transesophageal echocardiography. Pediatr Cardiol 2008, 29:690–691.

    Article  PubMed  CAS  Google Scholar 

  49. Jenkins C, Monaghan M, Shirali G, et al.: An intensive interactive course for 3D echocardiography: is “Crop Till You Drop” an effective learning strategy? Eur J Echocardiogr 2008, 9:373–380.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish S. Shirali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirali, G.S. Three-dimensional echocardiography in congenital heart disease. curr cardiovasc imaging rep 1, 16–24 (2008). https://doi.org/10.1007/s12410-008-0005-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-008-0005-2

Keywords

Navigation