Skip to main content

Exposure to a Mixture of Metals and Growth Indicators in 6–11-Year-Old Children from the 2013–2016 NHANES

Abstract

Lead (Pb), mercury (Hg), and fluoride (F) exposure during childhood is of concern owing to their toxicity. Also, evidence suggests that high and low exposure levels to manganese (Mn) and selenium (Se) during this vulnerable period are associated with an increased risk of adverse health effects. A reduced growth is associated with high Pb and F exposure; however, little is known about their impact on children’s body size, and there is a lack of consensus on the effects of Hg, Mn, and Se exposure on children’s anthropometric measures. This is particularly true for childhood metal co-exposures at levels relevant to the general population. We investigated the joint effects of exposure to a metal mixture (Pb, Mn, Hg, and Se in blood and F in plasma) on 6–11-year-old US children’s anthropometry (n = 1634). Median F, Pb, Mn, Hg, and Se concentrations were 0.3 µmol/L, 0.5 µg/dL, 10.2 µg/L, 0.3 µg/L, and 178.0 µg/L, respectively. The joint effects of the five metals were modeled using Bayesian kernel machine and linear regressions. Pb and Mn showed opposite directions of associations with all outcome measured, where Pb was inversely associated with anthropometry. For body mass index and waist circumference, the effect estimates for Pb and Mn appeared stronger at high and low concentrations of the other metals of the mixture, respectively. Our findings suggest that metal co-exposures may influence children’s body mass and linear growth indicators, and that such relations may differ by the exposure levels of the components of the metal mixture.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32:563–573. https://doi.org/10.1007/s10534-019-00193-5

    CAS  Article  Google Scholar 

  2. Ballew C, Khan LK, Kaufmann R, Mokdad A, Miller DT, Gunter EW (1999) Blood lead concentration and children’s anthropometric dimensions in the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. J Pediatr 134:623–630. https://doi.org/10.1016/s0022-3476(99)70250-7

    CAS  Article  Google Scholar 

  3. Barbieri MM, Berger JO (2004) Optimal predictive model selection. Ann Stat 32:870–897. https://doi.org/10.1214/009053604000000238

    Article  Google Scholar 

  4. Bellinger DC, Chen A, Lanphear BP (2017) Establishing and achieving national goals for preventing lead toxicity and exposure in children. JAMA Pediatr 171:616–618. https://doi.org/10.1001/jamapediatrics.2017.0775

    Article  Google Scholar 

  5. Benefice E, Monrroy SJL, Rodriguez RWL (2008) A nutritional dilemma: fish consumption, mercury exposure and growth of children in Amazonian Bolivia. Int J Environ Health Res 18:415–427. https://doi.org/10.1080/09603120802272235

    CAS  Article  Google Scholar 

  6. Berry WD, Moriarty CM, Lau Y-S (2002) Lead attenuation of episodic growth hormone secretion in male rats. Int J Toxicol 21:93–98. https://doi.org/10.1080/10915810252866060

    CAS  Article  Google Scholar 

  7. Bloom MS, Buck Louis GM, Sundaram R, Maisog JM, Steuerwald AJ, Parsons PJ (2015) Birth outcomes and background exposures to select elements, the Longitudinal Investigation of Fertility and the Environment (LIFE). Environ Res 138:118–129. https://doi.org/10.1016/j.envres.2015.01.008

    CAS  Article  Google Scholar 

  8. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostat Oxf Engl 16:493–508. https://doi.org/10.1093/biostatistics/kxu058

    Article  Google Scholar 

  9. Bobb JF, Claus Henn B, Valeri L, Coull BA (2018) Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health Glob Access Sci Source 17:1–10. https://doi.org/10.1186/s12940-018-0413-y

    Article  Google Scholar 

  10. Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care 40:186–215. https://doi.org/10.1016/j.cppeds.2010.07.002

    Article  Google Scholar 

  11. Buckley JP, Barrett ES, Beamer PI, Bennett DH, Bloom MS, Fennell TR, Fry RC, Funk WE, Hamra GB, Hecht SS, Kannan K, Iyer R, Karagas MR, Lyall K, Parsons PJ, Pellizzari ED, Signes-Pastor AJ, Starling AP, Wang A, Watkins DJ, Zhang M, Woodruff TJ (2020) Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/s41370-020-0211-9

    Article  Google Scholar 

  12. Burns JS, Williams PL, Lee MM, Revich B, Sergeyev O, Hauser R, Korrick SA (2017) Peripubertal blood lead levels and growth among Russian boys. Environ Int 106:53–59. https://doi.org/10.1016/j.envint.2017.05.023

    CAS  Article  Google Scholar 

  13. Carbonell-Barrachina AA, Signes-Pastor AJ, Vázquez-Araújo L, Burló F, Sengupta B (2009) Presence of arsenic in agricultural products from arsenic-endemic areas and strategies to reduce arsenic intake in rural villages. Mol Nutr Food Res 53:531–541. https://doi.org/10.1002/mnfr.200900038

    CAS  Article  Google Scholar 

  14. Cassidy-Bushrow AE, Havstad S, Basu N, Ownby DR, Park SK, Ownby DR, Johnson CC, Wegienka G (2016) Detectable blood lead level and body size in early childhood. Biol Trace Elem Res 171:41–47. https://doi.org/10.1007/s12011-015-0500-7

    CAS  Article  Google Scholar 

  15. CDC (2020) Lead—blood lead reference value. https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm. Accessed 4 Jan 2020

  16. Chen L, Ding G, Gao Y, Wang P, Shi R, Huang H, Tian Y (2014) Manganese concentrations in maternal–infant blood and birth weight. Environ Sci Pollut Res 21:6170–6175. https://doi.org/10.1007/s11356-013-2465-4

    CAS  Article  Google Scholar 

  17. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    CAS  Article  Google Scholar 

  18. Chung SE, Cheong H-K, Ha E-H, Kim B-N, Ha M, Kim Y, Hong Y-C, Park H, Oh S-Y (2015) Maternal blood manganese and early neurodevelopment: the Mothers And Children’s Environmental Health (MOCEH) Study. Environ Health Perspect 123:717–722. https://doi.org/10.1289/ehp.1307865

    CAS  Article  Google Scholar 

  19. Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, Bornman R, Eskenazi B (2018) Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ Int 113:122–132. https://doi.org/10.1016/j.envint.2018.01.016

    CAS  Article  Google Scholar 

  20. Crooks DL (1995) American children at risk: Poverty and its consequences for children’s health, growth, and school achievement. Am J Phys Anthropol 38:57–86. https://doi.org/10.1002/ajpa.1330380605

    Article  Google Scholar 

  21. Deierlein AL, Teitelbaum SL, Windham GC, Pinney SM, Galvez MP, Caldwell KL, Jarrett JM, Gajek R, Kushi LH, Biro F, Wolff MS, Breast Cancer, and Environment Research Program (2019) Lead exposure during childhood and subsequent anthropometry through adolescence in girls. Environ Int 122:310–315. https://doi.org/10.1016/j.envint.2018.11.031

    CAS  Article  Google Scholar 

  22. Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJP (2010) Boys live dangerously in the womb. Am J Hum Biol 22:330–335. https://doi.org/10.1002/ajhb.20995

    Article  Google Scholar 

  23. Fábelová L, Vandentorren S, Vuillermoz C, Garnier R, Lioret S, Botton J (2018) Hair concentration of trace elements and growth in homeless children aged < 6years: results from the ENFAMS Study. Environ Int 114:318–325. https://doi.org/10.1016/j.envint.2017.10.012

    CAS  Article  Google Scholar 

  24. Fleisch AF, Burns JS, Williams PL, Lee MM, Sergeyev O, Korrick SA, Hauser R (2013) Blood lead levels and serum insulin-like growth factor 1 concentrations in peripubertal boys. Environ Health Perspect 121:854–858. https://doi.org/10.1289/ehp.1206105

    CAS  Article  Google Scholar 

  25. Freire C, Amaya E, Gil F, Murcia M, Llop S, Casas M, Vrijheid M, Lertxundi A, Irizar A, Fernández-Tardón G, Castro-Delgado RV, Olea N, Fernández MF (2019) Placental metal concentrations and birth outcomes: the environment and childhood (INMA) project. Int J Hyg Environ Health 222:468–478. https://doi.org/10.1016/j.ijheh.2018.12.014

    CAS  Article  Google Scholar 

  26. Gao Z-Y, Li M-M, Wang J, Yan J, Zhou C-C, Yan C-H (2018) Blood mercury concentration, fish consumption and anthropometry in Chinese children: a national study. Environ Int 110:14–21. https://doi.org/10.1016/j.envint.2017.08.016

    CAS  Article  Google Scholar 

  27. Gardner RM, Kippler M, Tofail F, Bottai M, Hamadani J, Grandér M, Nermell B, Palm B, Rasmussen KM, Vahter M (2013) Environmental exposure to metals and children’s growth to age 5 years: a prospective cohort study. Am J Epidemiol 177:1356–1367. https://doi.org/10.1093/aje/kws437

    Article  Google Scholar 

  28. Gelander L (2006) Children’s growth: a health indicator and a diagnostic tool. Acta Paediatr 95:517–518. https://doi.org/10.1111/j.1651-2227.2006.tb02276.x

    Article  Google Scholar 

  29. Gleason KM, Valeri L, Shankar AH, Hasan MOSI, Quamruzzaman Q, Rodrigues EG, Christiani DC, Wright RO, Bellinger DC, Mazumdar M (2016) Stunting is associated with blood lead concentration among Bangladeshi children aged 2–3 years. Environ Health 15:103. https://doi.org/10.1186/s12940-016-0190-4

    CAS  Article  Google Scholar 

  30. Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, Baeyens W, Nawrot TS, Loots I, Van Larebeke N, Schoeters G (2016) Combined effects of prenatal exposures to environmental chemicals on birth weight. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph13050495

    Article  Google Scholar 

  31. Grandjean P (2019) Developmental fluoride neurotoxicity: an updated review. Environ Health 18:110. https://doi.org/10.1186/s12940-019-0551-x

    Article  Google Scholar 

  32. Guan H, Wang M, Li X, Piao F, Li Q, Xu L, Kitamura F, Yokoyama K (2014) Manganese concentrations in maternal and umbilical cord blood: related to birth size and environmental factors. Eur J Public Health 24:150–157. https://doi.org/10.1093/eurpub/ckt033

    Article  Google Scholar 

  33. Henn BC, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, Schnaas L, Amarasiriwardena C, Bellinger DC, Hu H, Wright RO (2010) Early Postnatal blood manganese levels and children’s neurodevelopment. Epidemiol (Camb, Mass) 21:433–439

    Article  Google Scholar 

  34. Hrubá F, Strömberg U, Černá M, Chen C, Harari F, Harari R, Horvat M, Koppová K, Kos A, Krsková A, Krsnik M, Laamech J, Li Y-F, Löfmark L, Lundh T, Lundström N-G, Lyoussi B, Mazej D, Osredkar J, Pawlas K, Pawlas N, Prokopowicz A, Rentschler G, Spěváčková V, Spiric Z, Tratnik J, Skerfving S, Bergdahl IA (2012) Blood cadmium, mercury, and lead in children: An international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environ Int 41:29–34. https://doi.org/10.1016/j.envint.2011.12.001

    CAS  Article  Google Scholar 

  35. Institute of Medicine (U.S.) (1997) Dietary reference intakes: for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy Press, Washington, D.C

    Google Scholar 

  36. Japan Environment and Children’s Study Group (2019) Association of blood mercury levels during pregnancy with infant birth size by blood selenium levels in the Japan Environment and Children’s Study: a prospective birth cohort. Environ Int 125:418–429. https://doi.org/10.1016/j.envint.2019.01.051

    CAS  Article  Google Scholar 

  37. Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123. https://doi.org/10.1007/s11270-006-2027-1

    CAS  Article  Google Scholar 

  38. Kerr BT, Ochs-Balcom HM, López P, García-Vargas GG, Rosado JL, Cebrián ME, Kordas K (2019) Effects of ALAD genotype on the relationship between lead exposure and anthropometry in a Cohort of Mexican children. Environ Res 170:65–72. https://doi.org/10.1016/j.envres.2018.12.003

    CAS  Article  Google Scholar 

  39. Kim S, Kim S, Won S, Choi K (2017) Considering common sources of exposure in association studies - Urinary benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone balance in the NHANES 2007–2008. Environ Int 107:25–32. https://doi.org/10.1016/j.envint.2017.06.013

    CAS  Article  Google Scholar 

  40. Lander RL, Williams SM, Costa-Ribeiro H, Mattos AP, Barreto DL, Houghton LA, Bailey KB, Lander AG, Gibson RS (2015) Understanding the complex determinants of height and adiposity in disadvantaged daycare preschoolers in Salvador, NE Brazil through structural equation modelling. BMC Public Health 15:1086. https://doi.org/10.1186/s12889-015-2406-x

    Article  Google Scholar 

  41. Laue HE, Moroishi Y, Jackson BP, Palys TJ, Madan JC, Karagas MR (2020) Nutrient-toxic element mixtures and the early postnatal gut microbiome in a United States longitudinal birth cohort. Environ Int 138:105613. https://doi.org/10.1016/j.envint.2020.105613

    CAS  Article  Google Scholar 

  42. Lazarevic N, Barnett AG, Sly PD, Knibbs LD (2019) Statistical methodology in studies of prenatal exposure to mixtures of endocrine-disrupting chemicals: a review of existing approaches and new alternatives. Environ Health Perspect 127:1–24. https://doi.org/10.1289/EHP2207

    Article  Google Scholar 

  43. Leite HP, Nogueira PC, de Oliveira Iglesias SB, de Oliveira SV, Sarni RO (2015) Increased plasma selenium is associated with better outcomes in children with systemic inflammation. Nutrition 31:485–490. https://doi.org/10.1016/j.nut.2014.09.008

    CAS  Article  Google Scholar 

  44. Lewicka I, Kocyłowski R, Grzesiak M, Gaj Z, Oszukowski P, Suliburska J (2017) Selected trace elements concentrations in pregnancy and their possible role—literature review. Ginekol Pol 88:509–514. https://doi.org/10.5603/GP.a2017.0093

    Article  Google Scholar 

  45. Little BB, Spalding S, Walsh B, Keyes DC, Wainer J, Pickens S, Royster M, Villanacci J, Gratton T (2009) Blood lead levels and growth status among African–American and Hispanic children in Dallas, Texas—1980 and 2002: Dallas Lead Project II. Ann Hum Biol 36:331–341. https://doi.org/10.1080/03014460902806615

    CAS  Article  Google Scholar 

  46. Liu J, Liu X, Wang W, McCauley L, Pinto-Martin J, Wang Y, Li L, Yan C, Rogan WJ (2014) Blood lead concentrations and children’s behavioral and emotional problems: a cohort study. JAMA Pediatr 168:737–745. https://doi.org/10.1001/jamapediatrics.2014.332

    Article  Google Scholar 

  47. Ljung K, Palm B, Grandér M, Vahter M (2011) High concentrations of essential and toxic elements in infant formula and infant foods—a matter of concern. Food Chem 127:943–951. https://doi.org/10.1016/j.foodchem.2011.01.062

    CAS  Article  Google Scholar 

  48. Llop S, Lopez-Espinosa M-J, Rebagliato M, Ballester F (2013) Gender differences in the neurotoxicity of metals in children. Toxicology 311:3–12. https://doi.org/10.1016/j.tox.2013.04.015

    CAS  Article  Google Scholar 

  49. Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, Bernstein L, Hartge P (2004) Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect 112:1691–1696. https://doi.org/10.1289/ehp.7199

    CAS  Article  Google Scholar 

  50. Lucchini R, Placidi D, Cagna G, Fedrighi C, Oppini M, Peli M, Zoni S (2017) Manganese and developmental neurotoxicity. Adv Neurobiol 18:13–34. https://doi.org/10.1007/978-3-319-60189-2_2

    Article  Google Scholar 

  51. Min K-B, Min J-Y, Cho S-I, Kim R, Kim H, Paek D (2008) Relationship between low blood lead levels and growth in children of white-collar civil servants in Korea. Int J Hyg Environ Health 211:82–87. https://doi.org/10.1016/j.ijheh.2007.03.003

    CAS  Article  Google Scholar 

  52. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899. https://doi.org/10.1001/jama.296.15.1885

    CAS  Article  Google Scholar 

  53. Mushak P, Michael Davis J, Crocetti AF, Grant LD (1989) Prenatal and postnatal effects of low-level lead exposure: Integrated summary of a report to the U.S. congress on childhood lead poisoning. Environ Res 50:11–36. https://doi.org/10.1016/S0013-9351(89)80046-5

    CAS  Article  Google Scholar 

  54. Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141. https://doi.org/10.1016/j.scitotenv.2008.06.024

    CAS  Article  Google Scholar 

  55. NHANES (2013a) NHANES 2013–2014 laboratory methods, centers for disease control and prevention. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/LabMethods.aspx?BeginYear=2013. Accessed 10 July 2020

  56. NHANES (2013b) NHANES 2013–2014 procedure manuals, centers for disease control and prevention. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Manuals.aspx?BeginYear=2013. Accessed 10 July 2020

  57. NHANES (2013c) Anthropometry procedures manual 2013, centers for disease control and prevention. https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/2013_Anthropometry.pdf. Accessed 10 July 2020

  58. NHANES (2015a) NHANES 2015–2016 laboratory methods, centers for disease control and prevention. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?BeginYear=2015. Accessed 10 July 2020

  59. NHANES (2015b) NHANES 2015–2016 procedure manuals, centers for disease control and prevention. https://www.n.cdc.gov/nchs/nhanes/ContinuousNhanes/Manuals.aspx?BeginYear=2015. Accessed 10 July 2020

  60. NHANES (2016a) NHANES 2015–2016 anthropometry procedures manual, centers for disease control and prevention. https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/manuals/2016_Anthropometry_Procedures_Manual.pdf. Accessed 10 July 2020

  61. NHANES (2016b) 2013–2014 Data documentation, codebook, and frequencies. Centers for Disease Control and Prevention, Atlanta. https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PBCD_H.htm. Accessed 10 July 2020

    Google Scholar 

  62. NHANES (2018) 2015–2016 data documentation, codebook, and frequencies, centers for disease control and prevention. https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/PBCD_I.htm. Accessed 10 July 2020

  63. O’Connor D, Hou D, Ye J, Zhang Y, Ok YS, Song Y, Coulon F, Peng T, Tian L (2018) Lead-based paint remains a major public health concern: a critical review of global production, trade, use, exposure, health risk, and implications. Environ Int 121:85–101. https://doi.org/10.1016/j.envint.2018.08.052

    CAS  Article  Google Scholar 

  64. Ortega RM, Rodríguez-Rodríguez E, Aparicio A, Jiménez-Ortega AI, Palermos C, Perea JM, Navia B, López-Sobaler AM (2013) Young children with excess of weight show an impaired selenium status. Int J Vitam Nutr Res 82:121

    Article  Google Scholar 

  65. Pounds JG, Long GJ, Rosent JF (1991) Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91:17–32

    CAS  Article  Google Scholar 

  66. R Core Team (2014) R: a language and enrionment for statistical computing, R Foundation for Statisical Computing. Vienna. https://www.r-project.org/. Accessed 10 July 2020

  67. Raihan MJ, Briskin E, Mahfuz M, Islam MM, Mondal D, Hossain MI, Ahmed AMS, Haque R, Ahmed T (2018) Examining the relationship between blood lead level and stunting, wasting and underweight—a cross-sectional study of children under 2 years-of-age in a Bangladeshi slum. PLoS ONE 13:e0197856. https://doi.org/10.1371/journal.pone.0197856

    CAS  Article  Google Scholar 

  68. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    CAS  Article  Google Scholar 

  69. Rodríguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, Rojas-García A (2013) Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ 454–455:562–577. https://doi.org/10.1016/j.scitotenv.2013.03.047

    CAS  Article  Google Scholar 

  70. Sabra S, Malmqvist E, Saborit A, Gratacós E, Gomez Roig MD (2017) Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PLoS ONE 12:e0185645. https://doi.org/10.1371/journal.pone.0185645

    CAS  Article  Google Scholar 

  71. Schisterman EF, Vexler A, Whitcomb BW, Liu A (2006) The Limitations due to exposure detection limits for regression models. Am J Epidemiol 163:374–383. https://doi.org/10.1093/aje/kwj039

    Article  Google Scholar 

  72. Schwartz J, Angle C, Pitcher H (1986) Relationship between childhood blood lead levels and stature. Pediatrics 77:281–288

    CAS  Google Scholar 

  73. Scinicariello F, Buser MC, Mevissen M, Portier CJ (2013) Blood lead level association with lower body weight in NHANES 1999–2006. Toxicol Appl Pharmacol 273:516–523. https://doi.org/10.1016/j.taap.2013.09.022

    CAS  Article  Google Scholar 

  74. Shen Z, Hou D, Zhang P, Wang Y, Zhang Y, Shi P, O’Connor D (2018) Lead-based paint in children’s toys sold on China’s major online shopping platforms. Environ Pollut 241:311–318. https://doi.org/10.1016/j.envpol.2018.05.078

    CAS  Article  Google Scholar 

  75. Signes-Pastor AJ, Bouchard MF, Baker E, Jackson BP, Karagas MR (2018) Toenail manganese as biomarker of drinking water exposure: a reliability study from a US pregnancy cohort. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/s41370-018-0108-z

    Article  Google Scholar 

  76. Signes-Pastor AJ, Doherty BT, Romano ME, Gleason KM, Gui J, Baker E, Karagas MR (2019) Prenatal exposure to metal mixture and sex-specific birth outcomes in the New Hampshire Birth Cohort Study. Environ Epidemiol. https://doi.org/10.1097/EE9.0000000000000068

    Article  Google Scholar 

  77. Stratakis N, Conti DV, Borras E, Sabido E, Roumeliotaki T, Papadopoulou E, Agier L, Basagana X, Bustamante M, Casas M, Farzan SF, Fossati S, Gonzalez JR, Grazuleviciene R, Heude B, Maitre L, McEachan RRC, Theologidis I, Urquiza J, Vafeiadi M, West J, Wright J, McConnell R, Brantsaeter A-L, Meltzer H-M, Vrijheid M, Chatzi L (2020) Association of fish consumption and mercury exposure during pregnancy with metabolic health and inflammatory biomarkers in children. JAMA Netw Open 3:e201007–e201007. https://doi.org/10.1001/jamanetworkopen.2020.1007

    Article  Google Scholar 

  78. Terry A, Herrick K, Afful J, Ahluwalia N (2018) Seafood consumption in the United States, 2013–2016. https://www.cdc.gov/nchs/products/databriefs/db321.htm. Accessed 4 Feb 2020

  79. Thomas S, Arbuckle TE, Fisher M, Fraser WD, Ettinger A, King W (2015) Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: the MIREC Study. Environ Res 140:430–439. https://doi.org/10.1016/j.envres.2015.04.018

    CAS  Article  Google Scholar 

  80. Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, Kile ML, Quamruzzaman Q, Afroz S, Golam M, Amarasiriwardena C, Bellinger DC, Christiani DC, Coull BA, Wright RO (2017) The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from rural Bangladesh. Environ Health Perspect 067015:1–11. https://doi.org/10.1289/EHP614

    Article  Google Scholar 

  81. Wang S-X, Wang Z-H, Cheng X-T, Li J, Sang Z-P, Zhang X-D, Han L-L, Qiao X-Y, Wu Z-M, Wang Z-Q (2007) Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province. China Environ Health Perspect 115:643–647. https://doi.org/10.1289/ehp.9270

    CAS  Article  Google Scholar 

  82. Wang Y, Gao X, Pedram P, Shahidi M, Du J, Yi Y, Gulliver W, Zhang H, Sun G (2016) Significant beneficial association of high dietary selenium intake with reduced body fat in the CODING Study. Nutrients. https://doi.org/10.3390/nu8010024

    Article  Google Scholar 

  83. Xia W, Zhou Y, Zheng T, Zhang B, Bassig BA, Li Y, Wise JP, Zhou A, Wan Y, Wang Y, Xiong C, Zhao J, Li Z, Yao Y, Hu J, Pan X, Xu S (2016) Maternal urinary manganese and risk of low birth weight: a case–control study. BMC Public Health 16:1–9. https://doi.org/10.1186/s12889-016-2816-4

    CAS  Article  Google Scholar 

  84. Yang H, Huo X, Yekeen TA, Zheng Q, Zheng M, Xu X (2013) Effects of lead and cadmium exposure from electronic waste on child physical growth. Environ Sci Pollut Res 20:4441–4447. https://doi.org/10.1007/s11356-012-1366-2

    CAS  Article  Google Scholar 

  85. Zeng X, Xu X, Qin Q, Ye K, Wu W, Huo X (2019) Heavy metal exposure has adverse effects on the growth and development of preschool children. Environ Geochem Health 41:309–321. https://doi.org/10.1007/s10653-018-0114-z

    CAS  Article  Google Scholar 

  86. Zhang Y, Dong T, Hu W, Wang Xu, Xu B, Lin Z, Hofer T, Stefanoff P, Chen Y, Wang X, Xia Y (2019) Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int 123:325–336. https://doi.org/10.1016/j.envint.2018.11.076

    CAS  Article  Google Scholar 

Download references

Funding

This work was funded in part by Grants from the National Institutes of Health: P01ES022832, R25CA134286, and P42ES007373, and the US EPA: RD83544201. Gauri Desai was supported by the Community for Global Health Equity at the University at Buffalo. Miguel García-Villarino was funded by CIBERESP (PhD-employment-contract and fellowship for short stays abroad-2019).

Author information

Affiliations

Authors

Contributions

AJS-P: formal analysis, methodology, visualization, writing—original draft, writing—review & editing. GD: methodology, writing—review & editing. MG-V: formal analysis, visualization, writing—review & editing. MRK: conceptualization, methodology, writing—review & editing. KK: conceptualization, methodology, writing—review & editing.

Corresponding author

Correspondence to Antonio J. Signes-Pastor.

Ethics declarations

Conflict of interest

The authors declare they have no known competing financial interests of personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1249 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Signes-Pastor, A.J., Desai, G., García-Villarino, M. et al. Exposure to a Mixture of Metals and Growth Indicators in 6–11-Year-Old Children from the 2013–2016 NHANES. Expo Health 13, 173–184 (2021). https://doi.org/10.1007/s12403-020-00371-8

Download citation

Keywords

  • NHANES
  • Childhood exposure
  • Metal mixture
  • Growth
  • Body size