Skip to main content
Log in

Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample

  • Original Article
  • Published:
ADHD Attention Deficit and Hyperactivity Disorders

Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the most highly heritable behavioral disorders in childhood, with heritability estimates between 60 and 90 %. Family, twin and adoption studies have indicated a strong genetic component in the susceptibility to ADHD. The synaptosomal-associated protein of molecular weight 25 kDa (SNAP25) is a plasma membrane protein known to be involved in synaptic and neural plasticity. Animal model studies have shown that SNAP25 gene is responsible for hyperkinetic behavior in the coloboma mouse. In recent studies, several authors reported an association between SNAP25 and ADHD. In this study, we used a case–control approach to analyze the possible association of two polymorphisms of SNAP25 for possible association with ADHD in a sample of 73 cases and 152 controls in a Colombian children population. Polymorphisms are located in 3′ untranslated region of SNAP25, positions T1065G and T1069C. We found a significant association with the GT haplotype (rs3746554|rs1051312) of SNAP25 (p = 0.001). Evidence of association was also found for the G/G genotype of rs3746554 (p = 0.002) and C/C genotype of rs1051312 (p = 0.009). This is the first study in a Latin American population. Similar to other studies, we found evidence of the association of SNAP25 and ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bark I, Wilson M (1994) Regulated vesicular fusion in neurons: snapping together the details. Proc Natl Acad Sci USA 91:4621–4624

    Article  CAS  PubMed  Google Scholar 

  • Barr CL, Feng Y, Wigg K et al (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5:405–409

    Article  CAS  PubMed  Google Scholar 

  • Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248

    Article  PubMed  Google Scholar 

  • Chang S, Zhang W, Gao L, Wang J (2012) Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources. Protein Cell 3:526–534

    Article  CAS  PubMed  Google Scholar 

  • Coolidge F, Thede L, Young S (2000) Heritability and the comorbidity of attention deficit hyperactivity disorder with behavioral disorders and executive function deficits: a preliminary investigation. Dev Neuropsychol 17:273–287

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry Off J World Psychiatr Assoc WPA 2:104–113

    Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J psychiatry Neurosci JPN 34:361–366

    Google Scholar 

  • Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Geissler J, Jacob CP et al (2012) Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood. Atten Defic Hyperact Disord 4:77–84

    Article  PubMed  Google Scholar 

  • Hawi Z, Matthews N, Wagner J et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS ONE 8:e60274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16:3104–3111

    CAS  PubMed  Google Scholar 

  • Kovacs-Nagy R, Sarkozy P, Hu J et al (2011) Haplotyping of putative microRNA-binding sites in the SNAP-25 gene. Electrophoresis 32:2013–2020

    Article  CAS  PubMed  Google Scholar 

  • Kustanovich V, Merriman B, McGough J et al (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315

    Article  CAS  PubMed  Google Scholar 

  • Pazvantoğlu O, Güneş S, Karabekiroğlu K et al (2013) The relationship between the presence of ADHD and certain candidate gene polymorphisms in a Turkish sample. Gene 528:320–327

    Article  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renner TJ, Walitza S, Dempfle A et al (2008) Allelic variants of SNAP25 in a family-based sample of ADHD. J Neural Transm 115:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sarkar K, Bhaduri N, Ghosh P et al (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37:349–357

    Article  CAS  PubMed  Google Scholar 

  • Solé X, Guinó E, Valls J et al (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  PubMed  Google Scholar 

  • Steffensen SC, Wilson MC, Henriksen SJ (1996) Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity. Synapse 22:281–289

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC (1995) Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site. J Biol Chem 270:2213–2217

    Article  PubMed  Google Scholar 

  • Svenaeus F (2013) Diagnosing mental disorders and saving the normal: American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DC, Med Health Care Philos p 991

    Google Scholar 

  • Vélez-van-Meerbeke A, Zamora IP, Guzmán G et al (2012) Evaluating executive function in schoolchildren with symptoms of attention deficit hyperactivity disorder. Neurologia 28:348–355

    Article  PubMed  Google Scholar 

  • Zhang H, Zhu S, Zhu Y et al (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15:48–52

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Velez-van-Meerbeke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez, J.M., Forero, D.A., Fonseca, D.J. et al. Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample. ADHD Atten Def Hyp Disord 6, 19–23 (2014). https://doi.org/10.1007/s12402-013-0123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12402-013-0123-9

Keywords

Navigation