Skip to main content

Flanker performance in female college students with ADHD: a diffusion model analysis

Abstract

Attention-deficit hyperactivity disorder (ADHD) is characterized by poor adaptation to environmental demands, which leads to various everyday life problems. The present study had four aims: (1) to compare performance in a flanker task in female college students with and without ADHD (N = 39) in a classical analyses of reaction time and error rate and studying the underlying processes using a diffusion model, (2) to compare the amount of focused attention, (3) to explore the adaptation of focused attention, and (4) to relate adaptation to psychological functioning. The study followed a 2-between (group: ADHD vs. control) × 2-within (flanker conflict: incongruent vs. congruent) × 2-within (conflict frequency: 20 vs. 80 %) design. Compared to a control group, the ADHD group displayed prolonged response times accompanied by fewer errors in a flanker task. Results from the diffusion model analyses revealed that the members of the ADHD group showed deficits in non-decisional processes (i.e., higher non-decision time) and leaned more toward accuracy than participants without ADHD (i.e., setting higher boundaries). The ADHD group showed a more focused attention and less adaptation to the task conditions which is related to psychological functioning. Deficient non-decisional processes and poor adaptation are in line with theories of ADHD and presumably typical for the ADHD population, although this has not been shown using a diffusion model. However, we assume that the cautious strategy of trading speed of for accuracy is specific to the subgroup of female college students with ADHD and might be interpreted as a compensation mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    A fourth parameter, the starting point z, is not relevant in the current study. The starting point is a measure of bias toward one of the decision bounds. In our analysis, the decision bounds are correct and incorrect responses, respectively. Therefore, a bias toward one of them is a priori impossible. Consequently, we fixed z to a/2.

  2. 2.

    The only exception was the main effect of condition for the non-decision time t 0. Whereas this main effect was significant when all participants were entered into the analyses, F(1, 37) = 5.00, p = 0.03, it was only marginally significant when the four critical participants were excluded, F(1, 33) = 3.90, p = 0.057.

References

  1. Adler LA (2004) Clinical presentations of adult patients with ADHD. J Clin Psychiatry 65:8–11

    PubMed  Article  Google Scholar 

  2. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  3. Antrop I, Roeyers H, Van Oost P, Buysse A (2000) Stimulation seeking and hyperactivity in children with ADHD. J Child Psychol Psychiatry 41:225–231

    PubMed  Article  CAS  Google Scholar 

  4. Babinski DE, Pelham WE, Molina BSG, Waschbusch DA, Gnagy EM, Yu J, Sibley MH, Biswas A (2011) Women with childhood ADHD: comparisons by diagnostic group and gender. J Psychopathol Behav Assess 33:420–429

    PubMed  Article  Google Scholar 

  5. Backman L, Dixon RA (1992) Psychological compensation: a theoretical framework. Psychol Bull 112:259–283

    PubMed  Article  CAS  Google Scholar 

  6. Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37:379–384

    PubMed  Article  Google Scholar 

  7. Barkley RA (1996) Attention deficit hyperactivity disorder adults: comorbidities and adaptive impairments. Psychiatry Interpers Biol Process 37:393–401

    Google Scholar 

  8. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    PubMed  Article  CAS  Google Scholar 

  9. Barkley RA, Fischer M (2011) Predicting impairment in major life activities and occupational functioning in hyperactive children as adults: self-reported executive function (EF) deficits versus EF tests. Dev Neuropsychol 36:137–161

    PubMed  Article  Google Scholar 

  10. Biederman J, Faraone SV, Spencer T, Wilens T, Mick E, Lapey KA (1994) Gender differences in a sample of adults with attention deficit hyperactivity disorder. Psychiatry Res 53:13–29

    PubMed  Article  CAS  Google Scholar 

  11. Biederman J, Petty C, Fried R, Fontanella J, Doyle AE, Seidman LJ, Faraone SV (2006) Impact of psychometrically defined deficits of executive functioning in adults with ADHD. Am J Psychiatry 163:1730–1738

    PubMed  Article  Google Scholar 

  12. Biederman J, Petty CR, Fried DoyleAE, Spencer T, Seidman LJ, Gross L, Poetzl K, Faraone SV (2007) Stability of executive function deficits into young adult years: a prospective longitudinal follow-up study of grown up males with ADHD. Acta Psychiatra Scand 116:129–136

    Article  CAS  Google Scholar 

  13. Biederman J, Petty CR, Dolan C, Hughes S, Mick E, Monuteaux MC, Faraone SV (2008) The long-term longitudinal course of oppositional defiant disorder and conduct disorder in ADHD boys: findings from a controlled 10-year prospective longitudinal follow-up study. Psychol Med 38:1027–1036

    PubMed  CAS  Google Scholar 

  14. Boonstra AM, Oosterlaan J, Sergeant JA, Buitelaar JK (2005) Executive functioning in adult ADHD: a meta-analytic review. Psychol Med 35:1097–1118

    PubMed  Article  Google Scholar 

  15. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    PubMed  Article  CAS  Google Scholar 

  16. Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546

    PubMed  Article  Google Scholar 

  17. Brickenkamp R (2002) Test d2: Aufmerksamkeits-Belastungs-Test [d2 test of attention]. Hogrefe, Göttingen

    Google Scholar 

  18. Bush G, Frazier JA, Rauch SL, Seidmann LJ, Whalen PJ, Jenike MA, Rosen BR, Biederman J (1999) Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop. Biol Psychiatry 45:1542–1552

    PubMed  Article  CAS  Google Scholar 

  19. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Rev Neurosci 3:617–628

    CAS  Google Scholar 

  20. Castellanos FX, Sonuga-Barke EJS, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra- individual variability. Biol Psychiatry 57:1416–1423

    PubMed  Article  Google Scholar 

  21. Coles MGH, Gratton G, Bashore TR, Eriksen CW, Donchin E (1985) A psychophysiological investigation of the continuous flow of human information processing. J Exp Psychol Hum Percept Perform 11:529–552

    PubMed  Article  CAS  Google Scholar 

  22. Davidson MA (2008) ADHD in adults: a review of the literature. J Atten Disord 11:628–641

    PubMed  Article  Google Scholar 

  23. Derogatis LR (1986) Manual for the symptom checklist 90 revised (SCL-90-R). Derogatis, Baltimore

    Google Scholar 

  24. Derogatis LR (1993) Brief symptom inventory (BSI), administration, scoring, and procedures manual, 3rd edn. Pearson Assessments, Minneapolis

    Google Scholar 

  25. Derogatis LR, Cleary PA (1977) Confirmation of the dimensional structure of the SCL-90: a study in construct validation. J Clin Psychol 33:981–989

    Article  Google Scholar 

  26. Donders J, Zhu J, Tulsky D (2001) Factor index score patterns in the WAIS-III standardization sample. Assess 8:193–203

    Article  CAS  Google Scholar 

  27. Edwards JR (2001) Ten difference score myths. Organ Res Methods 4:265–287

    Article  Google Scholar 

  28. Eriksen CW (1995) The flanker task and response competition: a useful tool for investigating a variety of cognitive problems. Vis Cogn 2:101–118

    Article  Google Scholar 

  29. Franke GH (2000) Brief symptom inventory von LR Derogatis (Kurzform der SCL-90-R)-Deutsche Version [Brief symptom inventory from LR Derogatis (short form of the SCL-90-R)-German version]. Beltz Test GmbH, Göttingen

    Google Scholar 

  30. Frazier TW, Demaree HA, Youngstrom EA (2004) Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychol 18:543–555

    Article  Google Scholar 

  31. Frazier TW, Youngstrom EA, Glutting JJ, Watkins MW (2007) ADHD and achievement: meta-analysis of the child, adolescent, and adult literatures and a concomitant study with college students. J Learn Disabil 40:49–65

    PubMed  Article  Google Scholar 

  32. German Medical Association [Deutsche Ärztekammer] (2005) Stellungnahme zur “Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS)”—Langfassung—[Statement on ADHD -Long version-]. German Medical Association, Berlin, Germany

  33. Gratton G, Coles MG, Donchin E (1992) Optimizing the use of information: strategic control of activation of responses. J Exp Psychol Gen 121:480–506

    PubMed  Article  CAS  Google Scholar 

  34. Hervey AS, Epstein JN, Curry JF (2004) Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review. Neuropsychol 18:485–503

    Article  Google Scholar 

  35. Huang-Pollock CL, Karalunas SL, Tam H, Moore AN (2012) Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance. J Abnorm Psychol 121:360–371

    PubMed  Article  Google Scholar 

  36. Jerome L, Segal A, Habinski L (2006) What we know about ADHD and driving risk: a literature review, meta-analysis and critique. J Can Acad Child Adolescent Psychiatry 15:105–125

    Article  Google Scholar 

  37. Johnson KA, Robertson IH, Barry E, Mulligan A, Dáibhis A, Daly M, Watchorn A, Gill M, Bellgrove MA (2008) Impaired conflict resolution and alerting in children with ADHD: evidence from the attention network task (ANT). J Child Psychol Psychiatry 49:1339–1347

    PubMed  Article  Google Scholar 

  38. Karalunas SL, Huang-Pollock CL, Nigg JT (2012) Decomposing attention-deficit/hyperactivity disorder (ADHD)-related effects in response speed and variability. Neuropsychol 26:684–694

    Article  Google Scholar 

  39. Kessler RC, Adler L, Barkley R et al (2006) The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am J Psychiatry 163:716–723

    PubMed  Article  Google Scholar 

  40. Kolmogorov A (1941) Confidence limits for an unknown distribution function. Ann Math Stat 12:461–463

    Article  Google Scholar 

  41. Krause J, Krause H-J (2006) ADHS im Erwachsenenalter [ADHD in Adulthood, 2nd edn], 2nd edn. Schattauer, Stuttgart

    Google Scholar 

  42. Lehle C, Hübner R (2008) On-the-fly adaptation of selectivity in the flanker task. Psychon Bull Rev 15:814–818

    PubMed  Article  Google Scholar 

  43. Lewis RF, Rennick PM (1979) Manual of the repeatable cognitive-perceptual-motor battery. Axon, Grosse Pointe Park

    Google Scholar 

  44. Lu C-H, Proctor RW (1995) The influence of irrelevant location information on performance: a review of the Simon and spatial Stroop effects. Psychon Bull Rev 2:174–207

    PubMed  Article  CAS  Google Scholar 

  45. MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203

    PubMed  Article  CAS  Google Scholar 

  46. Miller GM, Chapman JP (2001) Misunderstanding analysis of covariance. J Abnorm Psychol 110:40–48

    PubMed  Article  CAS  Google Scholar 

  47. Mulder MJ, Bos D, Weusten JMH, Van Belle J, Van Dijk SC, Simen P, Durston S (2010) Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biol Psychiatry 68:1114–1119

    PubMed  Article  Google Scholar 

  48. Mullane JC, Corkum PV, Klein RM, McLaughlin E (2009) Interference control in children with and without ADHD: a systematic review of flanker and Simon task performance. Child Neuropsychol 15:321–342

    PubMed  Article  Google Scholar 

  49. Nelson JM, Gregg N (2012) Depression and anxiety among transitioning adolescents and college students with ADHD, dyslexia, or comorbid ADHD/Dyslexia. J Atten Disord 16:244–254

    PubMed  Article  Google Scholar 

  50. Newark PE, Stieglitz R-D (2010) Therapy-relevant factors in adult ADHD from a cognitive behavioural perspective. Atten Def Hyp Disord 2:59–72

    Article  Google Scholar 

  51. Nigg JT, Willcutt EG, Doyle AE, Sonuga-Barke EJS (2005) Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Psychiatry Interpers Biol Process 57:1224–1230

    Article  Google Scholar 

  52. Rapport MD, Alderson RM, Kofler MJ, Sarver DE, Bolden J, Sims V (2008) Working memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): the contribution of central executive and subsystem processes. J Abnorm Child Psychol 36:825–887

    PubMed  Article  Google Scholar 

  53. Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59–108

    Article  Google Scholar 

  54. Richards TL, Rosen LA, Ramirez CA (1999) Psychological functioning differences among college students with confirmed ADHD, ADHD by self-report only, and without ADHD. J Coll Stud Dev 40:299–304

    Google Scholar 

  55. Sagvolden T, Johansen EB, Aase H, Russell VA (2005) A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. The Behav Brain Sci 28:397–419

    Google Scholar 

  56. Sergeant J (2005) Modeling attention-deficit/hyperactivity disorder: a critical appraisal of the cognitive-energetic model. Biol Psychiatry 57:1248–1255

    PubMed  Article  Google Scholar 

  57. Sergeant JA, Oosterlaan J, Van der Meere JJ (1999) Information processing and energetic factors in attention-deficit/hyperactivity disorder. In: Quay HC, Hogan A (eds) Handbook of disruptive behaviour disorders. Plenum Press, New York, pp 75–104

    Chapter  Google Scholar 

  58. Sonuga-Barke EJS (2002) Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behav Brain Res 130:29–36

    PubMed  Article  Google Scholar 

  59. Sonuga-Barke EJS, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986

    PubMed  Article  Google Scholar 

  60. Sonuga-Barke EJS, Wiersema JR, Van der Meere J, Roeyers H (2010) Context-dependent dynamic processes in attention deficit/hyperactivity disorder: differentiating common and unique effects of state regulation deficits and delay aversion. Neuropsychol Rev 20:86–102

    PubMed  Article  Google Scholar 

  61. Spaniol J, Madden DJ, Voss A (2006) A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. J Exp Psychol Learn Mem Cogn 32:101–117

    PubMed  Article  Google Scholar 

  62. Spaniol J, Voss A, Grady CL (2008) Aging and emotional memory: cognitive mechanisms underlying the positivity effect. Psychol Aging 23:859–872

    PubMed  Article  Google Scholar 

  63. Spaniol J, Voss A, Bowen HJ, Grady CL (2011) Motivational incentives modulate age differences in visual perception. Psychol Aging 26:932–939

    PubMed  Article  Google Scholar 

  64. Starns JJ, Ratcliff R (2010) The effects of aging on the speed-accuracy compromise: boundary optimality in the diffusion model. Psychol Aging 25:377–390

    PubMed  Article  Google Scholar 

  65. Tukey JW (1977) Exploratory data analysis. Addison Wesley, Reading

    Google Scholar 

  66. Van der Meere JJ (2002) The role of attention. In: Sandberg S (ed) Monographs on child and adolescent psychiatry, 2nd edn. University Press, Cambridge, pp 162–213

    Google Scholar 

  67. Van Meel CS, Heslenfeld DJ, Oosterlaan J, Sergeant JA (2007) Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Res 151:211–220

    PubMed  Article  Google Scholar 

  68. von Aster M, Neubauer A, Horn R (2006) Wechsler-Intelligenztest für Erwachsene: Übersetzung und Adaptation der WAIS-III von David Wechsler [Wechsler intelligence test for adults: translation and adaptation of WAIS-III by David Wechsler]. Harcourt Test Services, Frankfurt/M

    Google Scholar 

  69. Voss A, Voss J (2007) Fast-dm: a free program for efficient diffusion model analysis. Behav Res Methods 39:767–775

    PubMed  Article  Google Scholar 

  70. Voss A, Voss J (2008) A fast numerical algorithm for the estimation of diffusion model parameters. J Math Psychol 52:1–9

    Article  Google Scholar 

  71. Wagenmakers EJ (2009) Methodological and empirical developments for the ratcliff diffusion model of response times and accuracy. Eur J Cogn Psychol 21:641–671

    Article  Google Scholar 

  72. Wendt M, Luna-Rodriguez A (2009) Conflict-frequency affects flanker interference: role of stimulus-ensemble-specific practice and flanker-response contingencies. Exp Psychol 56:206–217

    PubMed  Article  Google Scholar 

  73. Wendt M, Luna-Rodriguez A, Jacobsen T (2012) Conflict-induced perceptual filtering. J Exp Psychol Hum Percept Perform 38:675–686

    PubMed  Article  Google Scholar 

  74. Weyandt LL, DuPaul G (2008) ADHD in college students. J Atten Disord 10:9–19

    Article  Google Scholar 

  75. Weyandt LL, Rice JA, Linterman I, Mitzlaff L, Emert E (1998) Neuropsychological performance of a sample of adults with ADHD, developmental reading disorder, and controls. Dev Neuropsychol 14:643–656

    Article  Google Scholar 

  76. Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346

    PubMed  Article  Google Scholar 

  77. Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ (1996) Behavioral assessment of the dysexecutive syndrome. Thames Valley Test Company, Bury St. Edmunds, Suffolk

    Google Scholar 

  78. Wittchen H-U, Zaudig M, Fydrich T (1997) SKID Strukturiertes Klinisches Interview für DSM-IV Achse I und II Handanweisung [SKID: structured clinical interview for DSM-IV; Axis I and II]. Hogrefe, Göttingen

    Google Scholar 

  79. World Health Organization (2009) International statistical classification of diseases and related health problems (ICD-10), 10th revision. World Health Organization, Geneva

    Google Scholar 

  80. Zimmermann P, Fimm B (2006) Testbatterie zur Aufmerksamkeitsprüfung (TAP) [Testbatterie for attentional performance]. Psytest, Herzogenrath

    Google Scholar 

  81. Zimmermann P, Messner C, Poser U, Sedelmeier P (1991) Ein Fragebogen erlebter Defizite der Aufmerksamkeit (FEDA) [Questionnaire of experienced deficits in attention]. Unpublished Manuscript, Universität Freiburg

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julia Merkt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merkt, J., Singmann, H., Bodenburg, S. et al. Flanker performance in female college students with ADHD: a diffusion model analysis. ADHD Atten Def Hyp Disord 5, 321–341 (2013). https://doi.org/10.1007/s12402-013-0110-1

Download citation

Keywords

  • ADHD
  • Neuropsychological function
  • Flanker task
  • College students
  • Females
  • Diffusion model