Skip to main content
Log in

Exercise impact on sustained attention of ADHD children, methylphenidate effects

  • Original Article
  • Published:
ADHD Attention Deficit and Hyperactivity Disorders

Abstract

Attention deficit hyperactivity disorder (ADHD) is related to a deficiency of central catecholamines (CA) in cognitive, biochemical, and physical tests, and pharmaceutical intervention may have no effect if it is not accompanied by changes in the environment. The objective of our study was to test the hypothesis that central CA are responsible for the increase in speed reaction seen after physical activity (PA) and to measure the impact of high intensity PA on the sustained attention of 25 children diagnosed with ADHD consistent with the Disease Statistical Mental-IV (DSM-IV) criteria. It is possible that practicing sports assists in the management of the disorder. The children were divided between users (US) and non-users (NUS) of methylphenidate (MTP), and the groups were compared to evaluate the effect of the drug on cognition after PA. Post-exercise performance on Conner’s Continuous Performance Test-II (CPT) was not affected by MTP, we observed significant improvements in response time, and we saw normalization in the impulsivity and vigilance measures. These results suggest that the improvements in cognition after physical effort are not CA dependent. Additionally, our results suggest that children’s attention deficits can be minimized through PA irrespective of treatment with MTP. Additional studies are necessary to confirm that exercise mitigates the harmful symptoms of ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acheson A, Conover JC, Fandl JP et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Dover MA, Yang BP et al (2000) Adrenomedullary function during cognitive testing in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 39:635–643

    Article  CAS  PubMed  Google Scholar 

  • Baillard JE, Boileau RA, Sleator EK et al (1976) Cardiovascular responses of hyperactive children to methylphenidate. JAMA 236(25):2870–2874

    Article  Google Scholar 

  • Bekinschtein P, Cammarota M, Katche C et al (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 105(7):2711–2716

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME et al (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60(10):1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Boileau RA, Ballard JE, Sprague RL et al (1976) Effect of methylphenidate on cardio respiratory responses in hyperactive children. Res Q 47:590–596

    CAS  PubMed  Google Scholar 

  • Brisswalter J, Collardeau M, René A (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Med 32:555–566

    Article  PubMed  Google Scholar 

  • Chen C, Burton M, Greenberger E et al (1999) Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evol Hum Behav 20(5):309–324

    Article  Google Scholar 

  • Conners CK (1969) A teacher rating scale for use in drug studies with children. Am J Psychiatry 126(6):884–888

    CAS  PubMed  Google Scholar 

  • Conners CK, Staff MHS (2000) Continuous performance test II (CPT-II) computer programs for windows tecnical guide. Multi-Health Systems, Noth Tonawada

    Google Scholar 

  • Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  CAS  PubMed  Google Scholar 

  • Craft DH (1983) Effect of prior exercise on cognitive performance tasks by hyperactive and normal young boys. Percept Mot Skills 56(3):979–982

    CAS  PubMed  Google Scholar 

  • Eisenberg DT, MacKillop J, Modi M et al (2007) Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. Behav Brain Func 3:2

    Article  CAS  Google Scholar 

  • Eisenberg DT, Campbell B, Gray PB et al (2008) Dopamine receptor genetic polymorphisms and body composition in undernourished pastoralists: an exploration of nutrition indices among nomadic and recently settled ariaal men of northern Kenya. BMC Evol Biol 8:173

    Article  PubMed  CAS  Google Scholar 

  • Farrel PA, Wilmore JH, Coyle EF et al (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11:338–344

    Google Scholar 

  • Freed CR, Yamamoto BK (1985) Regional brain dopamine metabolism: a marker for the speed, direction and posture of moving animals. Science 229:62–65

    Article  CAS  PubMed  Google Scholar 

  • Girardi NL, Shaywitz SE, Shaywitz BA et al (1995) Blunted catecholamine responses after glucose ingestion in children with attention deficit disorder. Pediatr Res 38:539–542

    Article  CAS  PubMed  Google Scholar 

  • Goldman LS, Genel M, Bezman RJ et al (1998) Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. JAMA 279(14):1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Naoi M, Nishino H (1994) Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull 35:41–49

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Hashitani T, Matsui N et al (1996) Dynamic regulation of striatal dopaminergic grafts during locomotor activity. Brain Res 710:45–55

    Article  CAS  PubMed  Google Scholar 

  • Hendren RL, De Backer I, Pandina GJ (2000) Review of neuroimaging studies of child and adolescent psychiatric disorders from the past 10 years. J Am Acad Child Adolesc Psychiatry 39:815–828

    Article  CAS  PubMed  Google Scholar 

  • Hochhaus L (1972) A table for the calculation of d and p. Psychol Bull 77(5):375–376

    Article  Google Scholar 

  • Jensen PS, Arnold LE, Swanson JM et al (2007) 3-year follow-up of the NIMH MTA study. J Am Acad Child Adolesc Psychiatry 46(8):989–1002

    Article  PubMed  Google Scholar 

  • Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3(6):453–462

    Article  CAS  PubMed  Google Scholar 

  • Kimko HC, Cross JT, Abernethy DR (1999) Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet 37(6):457–470

    Article  CAS  PubMed  Google Scholar 

  • Klein SA, Deffenbacher JL (1977) Relaxation and exercise for hyperactive impulsive children. Percept Mot Skills 45(3 Pt 2):1159–1162

    CAS  PubMed  Google Scholar 

  • Koehl M, Meerlo P, Gonzales D et al (2008) Exercise-induced promotion of hipocampal cell proliferation requires beta-endorphin. FASEB J 22(7):2253–2262

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68(5):2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Li D, Sham PC, Owen MJ et al (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14):2276–2284

    Article  CAS  PubMed  Google Scholar 

  • Losier BJ, McGrath PJ, Klein RM (1996) Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: a meta-analytic review. J Child Psychol Psychiatry 37(8):971–987

    Article  CAS  PubMed  Google Scholar 

  • MacRae PG, Spirduso WW, Cartee GD et al (1987) Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci Lett 79:138–144

    Article  CAS  PubMed  Google Scholar 

  • Mahon AD, Stephens BR, Cole AS (2008) Exercise responses in boys with attention deficit/hyperactivity disorder: effects of stimulant medication. J Atten Disord 12:170–176

    Article  PubMed  Google Scholar 

  • Mannelli M, Lazzeri C, Ianni L et al (1997) Dopamine and sympathoadrenal activity in man. Clin Exp Hypertens 19(1–2):163–179

    Article  CAS  PubMed  Google Scholar 

  • Marcondes E, Berquó ES, Yunes J et al (1969) Estudo antropométrico de crianças brasileiras de zero a doze anos de idade. Anais Nestlé, São Paulo

    Google Scholar 

  • McMorris T, Collard K, Corbett J et al (2008) A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacol Biochem Behav 89(1):106–115

    Article  CAS  PubMed  Google Scholar 

  • Meeusen R, Smolders I, Sarre S et al (1997) Endurance training effects on neurotransmitter release in rat striatum–an in vivo microdialysis study. Acta Physiol Scand 159:335–341

    Article  CAS  PubMed  Google Scholar 

  • Miranda H, Simão R, Lemos A et al (2005) Análise da freqüência cardíaca, pressão arterial e duplo-produto em diferentes posições corporais nos exercícios resistidos. Rev Bras Med Esporte 11:295–298

    Article  Google Scholar 

  • Nair J, Ehimare U, Beitman BD et al (2006) Clinical review: evidence-based diagnosis and treatment of ADHD in children. Mo Med 103(6):617–621

    PubMed  Google Scholar 

  • Nybo L, Nielsen B, Blomstrand E et al (2003) Neurohumoral responses during prolonged exercise in humans. J Appl Physiol 95:1125–1131

    CAS  PubMed  Google Scholar 

  • Quay HC (1997) Inhibition and attention deficit hyperactivity disorder. J Abnorm Child Psychol 25(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Reybrouck T, Weymans M, Stijns H (1985) Ventilatory anaerobic threshold in healthy children age and sex differences. Eur J Appl Physiol Occup Physiol 54(3):278–284

    Article  CAS  PubMed  Google Scholar 

  • Rösler M, Retz W, Retz-Junginger P et al (2004) Prevalence of attention deficit-/hyperactivity disorder (ADHD) and comorbid disorders in young male prison inmates. Eur Arch Psychiatry Clin Neurosci 254(6):365–371

    Article  PubMed  Google Scholar 

  • Schwarz L, Kindermann W (1990) b-Endorfina, adrenocorticotropic, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol 61:165–171

    Article  CAS  Google Scholar 

  • Souza I, Serra MA, Mattos P et al (2001) Comorbidity in children and adolescents with attention-deficit disorder: preliminary results. Arq Neuropsiquiatr 59:401–406

    CAS  PubMed  Google Scholar 

  • Spencer T, Biederman J, Wilens T (2000) Pharmacotherapy of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 9(1):77–97

    CAS  PubMed  Google Scholar 

  • Strong WB, Malina RM, Blimkie CJR et al (2005) Evidence based physical activity for school-age youth. J Pediatr 146:732–737

    Article  PubMed  Google Scholar 

  • Swanson J, Gupta S, Guinta D et al (1999) Acute tolerance to methylphenidate in the treatment of attention deficit hyperactivity disorder in children. Clin Pharmacol Ther 66(3):295–305

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Seals DR (2008) Endurance exercise performance in masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol 586(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tanner JM, Davies PS (1985) Clinical longitudinal standards for height and height velocity for North American children. J Pediatr 107(3):317–329

    Article  CAS  PubMed  Google Scholar 

  • Tantillo M, Kesick CM, Hynd GW et al (2002) The effects of exercise on children with attention-deficit hyperactivity disorder. Med Sci Sports Exerc 34(2):203–212

    Article  PubMed  Google Scholar 

  • Tella SR, Goldberg SR (1998) Monoamine transporter and sodium channel mechanisms in the rapid pressor response to cocaine. Pharmacol Biochem Behav 59(2):305–312

    Article  CAS  PubMed  Google Scholar 

  • Tomporowski PD (2003) Effects of acute bouts of exercise on cognition. Acta Psychol (Amst) 112:297–324

    Article  Google Scholar 

  • Van Craenenbroeck K, Clark SD, Cox MJ et al (2005) Folding efficiency is rate-limiting in dopamine D4 receptor biogenesis. J Biol Chem 280(19):9350–9357

    Google Scholar 

  • van den Buuse M (1998) Role of the mesolimbic dopamine system in cardiovascular homeostasis. Stimulation of the ventral tegmental area modulates the effect of vasopressin on blood pressure in conscious rats. Clin Exp Pharmacol Physiol 25(9):661–668

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler SJ et al (2003) Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology (Berl) 166:264–270

    CAS  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS et al (2000) PET studies of the effects of aerobic exercise on human striatal dopamine release. J Nucl Med 41(8):1352–1356

    CAS  PubMed  Google Scholar 

  • Wang E, Ding YC, Flodman P et al (2004) The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 74(5):931–934

    Article  CAS  PubMed  Google Scholar 

  • Wasserman K, McLlory MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852

    Article  CAS  PubMed  Google Scholar 

  • Weiss G, Kruger E, Danielson U (1975) Effect of long-term treatment of hyperactive children with methylphenidate. Can Med Assoc J 112(2):159–165

    CAS  PubMed  Google Scholar 

  • Werry JS, Aman MG (1975) Methylphenidate and haloperidol in children. Effects on attention, memory, and activity. Arch Gen Psychiatry 32(6):790–795

    CAS  PubMed  Google Scholar 

  • Wigal S, Nemet D, Swanson JM et al (2003) Catecholamine response to exercise in children with attention deficit hyperactivity. Pediatr Res 53(5):756–761

    Article  CAS  PubMed  Google Scholar 

  • Winter B, Breitenstein C, Mooren FC et al (2007) High impact running improves learning. Neurobiol Learn Mem 87:597–609

    Article  PubMed  Google Scholar 

  • Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Medina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, J.A., Netto, T.L.B., Muszkat, M. et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. ADHD Atten Def Hyp Disord 2, 49–58 (2010). https://doi.org/10.1007/s12402-009-0018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12402-009-0018-y

Keywords

Navigation