Derivation of bounds on reserve overestimation
Let \(\Delta_{t}=y_{t}-y_{t-1}\) denote the change in power output. For prevalent ramping constraints (13)–(14),
$$\begin{aligned}r_{t}^{+} & \leq\overline{V}-\Delta_{t}\,,\end{aligned}$$
(24)
$$\begin{aligned}r_{t}^{-} & \leq\underline{V}+\Delta_{t}\,,\end{aligned}$$
(25)
and for robust ramping constraints (16)–(17),
$$\begin{aligned}r_{t}^{+}+r_{t-1}^{-} & \leq\overline{V}-\Delta_{t}\,,\end{aligned}$$
(26)
$$\begin{aligned}r_{t-1}^{+}+r_{t}^{-} & \leq\underline{V}+\Delta_{t}\,.\end{aligned}$$
(27)
Case A—constant power
With constant power output \(\Delta_{t}=0\), \(r_{t}^{+}=r_{t-1}^{+}\), and \(r_{t}^{-}=r_{t-1}^{-}\), the following inequalities hold. For prevalent ramping constraints (24)–(25),
$$\begin{aligned}r_{t}^{+} & \leq\overline{V}\,,\end{aligned}$$
(28)
$$\begin{aligned}r_{t}^{-} & \leq\underline{V}\,,\end{aligned}$$
(29)
which gives an upper bound on total reserve of
$$r_{t}^{+}+r_{t}^{-}\leq\overline{V}+\underline{V}.$$
(30)
For robust ramping constraints (26)–(27),
$$\begin{aligned}r_{t}^{+}+r_{t}^{-} & \leq\overline{V}\,,\end{aligned}$$
(31)
$$\begin{aligned}r_{t}^{+}+r_{t}^{-} & \leq\underline{V}\,,\end{aligned}$$
(32)
s.t.
$$r_{t}^{+}+r_{t}^{-}\leq\min\left\{\overline{V},\underline{V}\right\}.$$
(33)
To determine the factor of reserve overestimation, compare the bound on total reserve of prevalent ramping constraints (30) to that of robust ramping constraints (33). In the worst-case of constant power output, prevalent ramping constraints overestimate total available reserve by a factor of
$$\frac{\overline{V}+\underline{V}}{\min\left\{\overline{V},\underline{V}\right\}}\geq 2,$$
(34)
compared to robust ramping constraints. For symmetric ramping rate limits \(V=\overline{V}=\underline{V}\), the bound on the overestimation factor decreases to \(2V/V=2\).
Case B—ramping up or down
Apply the same logic as before, assume the plant ramps down with the maximum ramp rate \(\Delta_{t}=-\underline{V}\), and again \(r_{t}^{+}=r_{t-1}^{+}\) as well as \(r_{t}^{-}=r_{t-1}^{-}\). Then, the prevalent formulation yields
$$\begin{aligned}r_{t}^{+} & \leq\overline{V}+\underline{V}\,,\end{aligned}$$
(35)
$$\begin{aligned}r_{t}^{-} & \leq 0\,,\end{aligned}$$
(36)
and the robust formulation
$$\begin{aligned}r_{t}^{+}+r_{t}^{-} & \leq\overline{V}+\underline{V}\,,\end{aligned}$$
(37)
$$\begin{aligned}r_{t}^{+}+r_{t}^{-} & \leq 0\,.\end{aligned}$$
(38)
With (35)–(36), only positive reserve can be provided, whereas with (37)–(38), neither positive nor negative reserve can be provided. Therefore, in the ramp-down case, overestimation of positive reserve is theoretically unbounded for the prevalent formulation. Equally, overestimation of negative reserve is unbounded in the ramp-up case. It is, of course, bounded by minimum and maximum power output levels that will be reached eventually.
Case C—oscillating power output
For example, consider alternating ramp-up and ramp-down phases with \(\Delta_{t-1}=-\underline{V}\), \(\Delta_{t}=\overline{V}\), and \(\Delta_{t+1}=\Delta_{t-1}=-\underline{V}\). For prevalent ramping constraints, for \(t\)
$$\begin{aligned}r_{t}^{+}\leq 0, & & r_{t}^{-}\leq\underline{V}+\overline{V}\,,\end{aligned}$$
(39)
and in \(t-1\)
$$\begin{aligned}r_{t-1}^{+}\leq\overline{V}+\underline{V}, & & r_{t-1}^{-}\leq 0\,.\end{aligned}$$
(40)
For robust ramping constraints, for \(t\)
$$\begin{aligned}r_{t}^{+}+r_{t-1}^{-}\leq 0, & & r_{t-1}^{+}+r_{t}^{-}\leq\underline{V}+\overline{V}\,,\end{aligned}$$
(41)
and for \(t+1\) by substituting \(\Delta_{t+1}=\Delta_{t-1}\), \(r_{t+1}^{+}=r_{t-1}^{+}\), and \(r_{t+1}^{-}=r_{t-1}^{-}\),
$$\begin{aligned}r_{t}^{-}+r_{t-1}^{+}\leq\overline{V}+\underline{V}, & & r_{t}^{+}+r_{t-1}^{-}\leq 0\,.\end{aligned}$$
(42)
Note that constraints (41) and (42) are identical.
From prevalent ramping constraints (39)–(40) follows
$$r_{t-1}^{+}+r_{t}^{-}\leq 2\left(\overline{V}+\underline{V}\right),$$
(43)
whereas for robust ramping constraints (41)–(42),
$$r_{t-1}^{+}+r_{t}^{-}\leq\overline{V}+\underline{V}.$$
(44)
This time, even for the asymmetrical case \(\overline{V}\neq\underline{V}\), overestimation is bounded by a factor of two. Interestingly, with robust constraints (41)–(42), the same amount of reserve can be allocated as with prevalent constraints (39)–(40) but only for a single period, e.g. \(r_{t}^{-}=\overline{V}+\underline{V}\). For the robust formulation, this comes at the expense of positive reserve in adjoining periods, s.t. \(r_{t-1}^{+}=r_{t+1}^{+}=0\), whereas with the prevalent formulation positive reserve in adjoining periods is unaffected, s.t. \(r_{t-1}^{+},r_{t+1}^{+}\leq\overline{V}+\underline{V}\).
Mathematical model for the computational study
The model with robust ramping constraints is given as the maximization of
$$\begin{aligned} \sum\limits_{t\in\mathcal{T}}\left(P_{t}^{\mathrm{x}}x_{t}+\sum\limits_{i\in\mathcal{I}}\right.&\left(P_{t}^{+}r_{it}^{+}+P_{t}^{-}r_{it}^{-}-C_{i}^{\mathrm{u}}u_{it}-C_{i}^{\mathrm{v}}v_{it}\right.\\ &\left.\left.-\sum\limits_{j\in\mathcal{J}_{i}}C_{ij}^{\mathrm{v}}y_{ijt}-C_{i}^{\mathrm{w}}w_{it}\right)\right)\,, \end{aligned}$$
(45)
subject to
$$\begin{aligned}y_{it} & =\underline{P}_{i}v_{it}+\sum\limits_{j\in\mathcal{J}_{i}}y_{ijt}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(46)
$$\begin{aligned}\underline{P}_{i}v_{it} & \leq y_{it}-r_{it}^{-}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(47)
$$\begin{aligned}y_{it}+r_{it}^{+} & \leq\overline{P}_{i}v_{it}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(48)
$$\begin{aligned}y_{ijt} & \leq\overline{P}_{ij}v_{it}, & & \forall i\in\mathcal{I},\forall j\in\mathcal{J}_{i},\forall t\in\mathcal{T}\,,\end{aligned}$$
(49)
$$\begin{aligned}\left(y_{it}+r_{it}^{+}\right)-\left(y_{it-1}-r_{it-1}^{-}\right) \leq\overline{V}_{i}v_{it-1}+\overline{U}_{i}u_{i}\,,\\ \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(50)
$$\begin{aligned}\left(y_{it-1}+r_{it-1}^{+}\right)-\left(y_{it}-r_{it}^{-}\right) \leq\underline{V}_{i}v_{it}+\underline{W}_{i}w_{it}\,,\\ \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(51)
$$\begin{aligned}y_{i0} & =Y_{i0}, & & \forall i\in\mathcal{I}\,,\end{aligned}$$
(52)
$$\begin{aligned}r_{i0}^{+} & =R_{i0}^{+}, & & \forall i\in\mathcal{I}\,,\end{aligned}$$
(53)
$$\begin{aligned}r_{i0}^{-} & =R_{i0}^{-}, & & \forall i\in\mathcal{I}\,,\end{aligned}$$
(54)
$$\begin{aligned}v_{it}-v_{it-1} & =u_{it}-w_{it}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(55)
$$\begin{aligned}v_{i0} & =V_{i0}, & & \forall i\in\mathcal{I}\,,\end{aligned}$$
(56)
$$\begin{aligned}u_{it}+w_{it} & \leq 1, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(57)
$$\begin{aligned}\sum\limits_{i\in\mathcal{I}}y_{it} & =x_{t}+X_{t}, & & \forall t\in\mathcal{T}\,,\end{aligned}$$
(58)
$$\begin{aligned}u_{it},v_{it},w_{it} & \in\mathbb{B}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(59)
$$\begin{aligned}x_{t} & \in\mathbb{R}_{\geq 0}, & & \forall t\in\mathcal{T}\,,\end{aligned}$$
(60)
$$\begin{aligned}r_{it}^{+},r_{it}^{-},y_{it} & \in\mathbb{R}_{\geq 0}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(61)
$$\begin{aligned}y_{ijt} & \in\mathbb{R}_{\geq 0}, & & \forall i\in\mathcal{I},\forall j\in\mathcal{J}_{i},\forall t\in\mathcal{T}\,.\end{aligned}$$
(62)
For the prevalent formulation, robust ramping constraints (50)–(51) are replaced by
$$\begin{aligned}\left(y_{it}+r_{it}^{+}\right)-y_{it-1} & \leq\overline{V}_{i}v_{it-1}+\overline{U}_{i}u_{i}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,,\end{aligned}$$
(63)
$$\begin{aligned}y_{it-1}-\left(y_{it}-r_{it}^{-}\right) & \leq\underline{V}_{i}v_{it}+\underline{W}_{i}w_{it}, & & \forall i\in\mathcal{I},\forall t\in\mathcal{T}\,.\end{aligned}$$
(64)
For fixed reserve requirements, we additionally introduce
$$\begin{aligned}\sum\limits_{i\in\mathcal{I}}r_{it}^{+} & =R_{t}^{+} & & \forall t\in\mathcal{T}\,,\end{aligned}$$
(65)
$$\begin{aligned}\sum\limits_{i\in\mathcal{I}}r_{it}^{-} & =R_{t}^{-} & & \forall t\in\mathcal{T}\,,\end{aligned}$$
(66)
where \(R_{t}^{+}\) and \(R_{t}^{-}\) are the reserve requirements given in the IEEE benchmark dataset (Knueven et al. 2020; Krall et al. 2012; Barrows et al. 2019).
List of symbols
Indices
-
\(i\)
:
-
Plant id
-
\(j\)
:
-
Output level
-
\(t\)
:
-
Time period
Parameters
-
\(C_{i}^{\mathrm{u}}\)
:
-
Start-up costs of plant \(i\)
-
\(C_{i}^{\mathrm{v}}\)
:
-
Operating costs at the minimum power output level of plant \(i\)
-
\(C_{ij}^{\mathrm{v}}\)
:
-
Marginal costs of power output of plant \(i\) at output level \(j\)
-
\(C_{i}^{\mathrm{w}}\)
:
-
Shut-down costs of plant \(i\)
-
\(\overline{P}_{i}\)
:
-
Maximum power output of plant \(i\)
-
\(\underline{P}_{i}\)
:
-
Minimum power output of plant \(i\)
-
\(\overline{P}_{ij}\)
:
-
Maximum power output of plant \(i\) at output level \(j\)
-
\(P_{t}^{\mathrm{x}}\)
:
-
Wholesale price in period \(t\)
-
\(P_{t}^{-}\)
:
-
Negative reserve price in period \(t\)
-
\(P_{t}^{+}\)
:
-
Positive reserve price in period \(t\)
-
\(R_{i0}^{-}\)
:
-
Initial negative reserve of plant \(i\) in period 0
-
\(R_{t}^{-}\)
:
-
Exogenous negative reserve requirement in period \(t\)
-
\(R_{i0}^{+}\)
:
-
Initial positive reserve of plant \(i\) in period 0
-
\(R_{t}^{+}\)
:
-
Exogenous positive reserve requirement in period \(t\)
-
\(\overline{U}_{i}\)
:
-
Start-up rate of plant \(i\)
-
\(\overline{V}_{i}\)
:
-
Maximum ramp-up rate of plant \(i\)
-
\(\underline{V}_{i}\)
:
-
Maximum ramp-down rate of plant \(i\)
-
\(V_{i}\)
:
-
Initial commitment status of plant \(i\)
-
\(\underline{W}_{i}\)
:
-
Shut-down rate of plant \(i\)
-
\(X_{t}\)
:
-
Power delivery obligation in period \(t\)
-
\(Y_{i0}\)
:
-
Initial power output of plant \(i\) in period 0
Sets
-
\(\mathcal{I}\)
:
-
Set of power plants
-
\(\mathcal{J}_{i}\)
:
-
Set of output levels of plant \(i\)
-
\(\mathcal{T}\)
:
-
Set of time periods
Variables
-
\(r_{it}^{-}\)
:
-
Negative reserve of plant \(i\) in period \(t\)
-
\(r_{it}^{+}\)
:
-
Positive reserve of plant \(i\) in period \(t\)
-
\(u_{it}\)
:
-
Start-up status of plant \(i\) in period \(t\)
-
\(v_{it}\)
:
-
Commitment status of plant \(i\) in period \(t\)
-
\(w_{it}\)
:
-
Shut-down status of plant \(i\) in period \(t\)
-
\(x_{t}\)
:
-
Wholesale market bid size in period \(t\)
-
\(y_{it}\)
:
-
Power output of plant \(i\) in period \(t\)
List of abbreviations
- aFRR:
-
Automatic Frequency Restoration Reserves
- BSP:
-
Balancing Service Provider
- CPP:
-
Conventional Power Plant
- mFRR:
-
Manual Frequency Restoration Reserves
- TSO:
-
Transmission System Operator
- UCP:
-
Unit Commitment Problem
Supplementary data