Skip to main content
Log in

AI-Enabled Optical Sensing for Smart and Precision Food Drying: Techniques, Applications and Future Directions

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Recent developments in alternative drying techniques have significantly heightened interest in innovative technologies that improve the yield and quality of dried goods, enhance energy efficiency, and facilitate continuous monitoring of drying processes. Artificial intelligence (AI)-enabled optical sensing technologies have emerged as promising tools for smart and precise monitoring of food drying processes. Food industries can leverage AI-enabled optical sensing technologies to gain a comprehensive understanding of drying dynamics, optimize process parameters, identify potential issues, and ensure product consistency and quality. This review systematically discusses the application of selected optical sensing technologies, such as near-infrared (NIR) spectroscopy, hyperspectral imaging, and conventional imaging (i.e., computer vision) powered by AI. After covering the basics of optical sensing technologies for smart drying and an overview of different drying methods, it explores various optical sensing techniques for monitoring and quality control of drying processes. Additionally, the review addresses the limitations of these optical sensing technologies and their prospects in smart drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zielinska M, Markowski M (2012) Color characteristics of carrots: effect of drying and rehydration. Int J Food Prop 15(2):450–466. https://doi.org/10.1080/10942912.2010.489209

    Article  CAS  Google Scholar 

  2. Calín-Sánchez Á, Lipan L, Cano-Lamadrid M, Kharaghani A, Masztalerz K, Carbonell-Barrachina Á, Figiel A (2020) Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 9(9). https://doi.org/10.3390/foods9091260

  3. Vega-Gálvez A, Ah-Hen K, Chacana M, Vergara J, Martínez-Monzó J, García-Segovia P, Lemus-Mondaca R, Di Scala K (2012) Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem 132(1):51–59. https://doi.org/10.1016/j.foodchem.2011.10.029

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S, Gillis A, Levkov K, Vitkin E, Golberg A (2020) Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. Innov Food Sci Emerg Technol 66:102509. https://doi.org/10.1016/j.ifset.2020.102509

    Article  Google Scholar 

  5. Xing X, Zhang C, Gu J, Zhang Y, Xinrun L, Zhuo Z (2021) Intelligent drying rack system based on internet of things. J Phys: Conf Ser 1887(1). https://doi.org/10.1088/1742-6596/1887/1/012002

  6. Menon A, Stojceska V, Tassou SA (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol 100:67–76. https://doi.org/10.1016/j.tifs.2020.03.014

    Article  CAS  Google Scholar 

  7. Moscetti R, Raponi F, Cecchini M, Monarca D, Massantini R (2021) Feasibility of computer vision as process analytical technology tool for the drying of organic apple slices. Acta Horticulturae ISHS 433–438

  8. Fracarolli JA, Pavarin FFA, Castro W, Blasco J (2020) Computer vision applied to food and agricultural products. Rev Cienc Agron 51(5):1–20. https://doi.org/10.5935/1806-6690.20200087

    Article  Google Scholar 

  9. Lindelauf AA, Saelmans AG, Van Kuijk SMJ, Van der Hulst RWJ, Rutger MS (2022) Near-infrared spectroscopy (NIRS) versus hyperspectral imaging (HSI) to detect flap failure in reconstructive surgery: a systematic review. Life 12(1). https://doi.org/10.3390/life12010065

  10. Cho JS, Ji YC, Moon KD (2020) Hyperspectral imaging technology for monitoring of moisture contents of dried persimmons during drying process. Food Sci Biotechnol 29(10):1407–1412. https://doi.org/10.1007/s10068-020-00791-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Netto JMS, Honorato FA, Azoubel PM, Kurozawa LE, Barbin DF (2021) Evaluation of melon drying using hyperspectral imaging technique in the near infrared region. LWT 143:111092. https://doi.org/10.1016/j.lwt.2021.111092

    Article  CAS  Google Scholar 

  12. Xue H, Xu X, Yang Y, Hu D, Niu G (2024) Rapid and non-destructive prediction of moisture content in maize seeds using hyperspectral imaging. Sensors 24(6):1855. https://doi.org/10.3390/s24061855

    Article  PubMed  PubMed Central  Google Scholar 

  13. Udomkun P, Nagle M, Argyropoulos D, Mahayothee B, Müller J (2016) Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. J Food Eng 189:82–89. https://doi.org/10.1016/j.jfoodeng.2016.05.014

    Article  Google Scholar 

  14. Rizwana S, Nesha SF, Kumar K, Pohthmi S, Hazarika MK (2023) Drying kinetics and image-based identification of drying end point during parboiling of Komal Chawal. J Agric Food Res 13:100646. https://doi.org/10.1016/j.jafr.2023.100646

    Article  Google Scholar 

  15. Yliniemi L, A Jutila E, P Uronen A (1981) Modelling and control of a pilot plant rotary drier used for drying of industrial ore concentrates. IFAC Proc 14(2):2837–2843. https://doi.org/10.1016/S1474-6670(17)63893-X

    Article  Google Scholar 

  16. Sivakumar R, Saravanan R, Perumal AE, Iniyan S (2016) Fluidized bed drying of some agro products– A review. Renew Sustain Energy Rev 61:280–301. https://doi.org/10.1016/j.rser.2016.04.014

    Article  CAS  Google Scholar 

  17. Oyinloye TM, Yoon WB (2020) Effect of freeze-drying on quality and grinding process of food produce: a review. Processes 8(3):1–23. https://doi.org/10.3390/PR8030354

    Article  Google Scholar 

  18. Fernández-Quiroz D, Tohidi MM, Paymard B, Lucero-Acuña A (2023) Immobilization of essential oils in biopolymeric matrices: recent approaches for controlled delivery systems. Stud Nat Prod Chem 78:365–401

    Article  Google Scholar 

  19. Ramos FM, Vivaldo SJ, Prata AS (2021) Impact of vacuum spray drying on encapsulation of fish oil: oxidative stability and encapsulation efficiency. Food Res Int 143(March):110283. https://doi.org/10.1016/j.foodres.2021.110283

    Article  CAS  PubMed  Google Scholar 

  20. Zielinska M, Michalska A (2016) Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem 212:671–680. https://doi.org/10.1016/j.foodchem.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  21. Khan MKI, Maan AA, Aadil RM, Nazir A, Butt MS, Rashid MI, Afzal MI (2020) Modelling and kinetic study of microwave-assisted drying of ginger and onion with simultaneous extraction of bioactive compounds. Food Sci Biotechnol 29(4):513–519. https://doi.org/10.1007/s10068-019-00695-5

    Article  CAS  PubMed  Google Scholar 

  22. Wiktor A, Witrowa-Rajchert D (2020) Drying kinetics and quality of carrots subjected to microwave-assisted drying preceded by combined pulsed electric field and ultrasound treatment. Dry Technol 38(1–2):176–188. https://doi.org/10.1080/07373937.2019.1642347

    Article  CAS  Google Scholar 

  23. Öztürk F, Gündüz H (2018) The effect of different drying methods on chemical composition, fatty acid, and amino acid profiles of sea cucumber (Holothuria tubulosa Gmelin, 1791). J Food Process Preserv 42(9):1–10. https://doi.org/10.1111/jfpp.13723

    Article  CAS  Google Scholar 

  24. Vadivambal R, Jayas DS (2011) Applications of thermal imaging in agriculture and food industry—A review. Food Bioproc Technol 4(2):186–199. https://doi.org/10.1007/s11947-010-0333-5

    Article  Google Scholar 

  25. Krishnamurthy K, Khurana HK, Soojin J, Irudayaraj J, Demirci A (2008) Infrared heating in food processing: an overview. Compr Rev Food Sci Food Saf 7(1):2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x

    Article  Google Scholar 

  26. Zartha S, Wilder J, Orozco GL, Murillo LMG, Osorio MP, Suarez NS (2021) Infrared drying trends applied to fruit. Front Sustain Food Syst 5:1–14. https://doi.org/10.3389/fsufs.2021.650690

    Article  Google Scholar 

  27. Yi Y, Salonitis K, Tsoutsanis P, Litos L, Patsavelas J (2017) Improving the curing cycle time through the numerical modeling of air flow in industrial continuous convection ovens. Procedia CIRP 63:499–504. https://doi.org/10.1016/j.procir.2017.03.167

    Article  Google Scholar 

  28. Davidson I (2023) Oven construction: electric ovens. Biscuit Bak Techno 1:201–209. https://doi.org/10.1016/b978-0-323-99923-6.00029-6

    Article  Google Scholar 

  29. Prvulovic S, Tolmac D, Lambic M (2007) Convection drying in the food industry. Agric Eng Int: CIGR Ejournal 9:1–13

    Google Scholar 

  30. Khatir Z, Paton J, Thompson H, Kapur N, Toropov V, Lawes M, Kirk D (2012) Computational fluid dynamics (CFD) investigation of air flow and temperature distribution in a small-scale bread-baking oven. Appl Energy 89(1):89–96. https://doi.org/10.1016/j.apenergy.2011.02.002

    Article  Google Scholar 

  31. Onwude DI, Hashim N, Chen G (2016) Recent advances of novel thermal combined hot air drying of agricultural crops. Trends Food Sci Technol 57:132–145. https://doi.org/10.1016/j.tifs.2016.09.012

    Article  CAS  Google Scholar 

  32. Mediani A, Hamezah HS, Jam FA, Mahadi NF, Chan SXY, Rohani ER, Che Lah NH, Azlan UK, Khairul Annuar NA, Azman NAF, Bunawan H, Sarian MN, Kamal N, Abas F (2022) A comprehensive review of drying meat products and the associated effects and changes. Front Nutr 9:1–24. https://doi.org/10.3389/fnut.2022.1057366

    Article  CAS  Google Scholar 

  33. Su Y, Zhang M, Mujumdar AS (2015) Recent developments in smart drying technology. Dry Technol 33(3):260–276. https://doi.org/10.1080/07373937.2014.985382

    Article  Google Scholar 

  34. Sun Q, Zhang M, Mujumdar AS (2019) Recent developments of artificial intelligence in drying of fresh food: a review. Crit Rev Food Sci Nutr 59(14):2258–2275. https://doi.org/10.1080/10408398.2018.1446900

    Article  PubMed  Google Scholar 

  35. Fan S, Zhang B, Li J, Huang W, Wang C (2016) Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosyst Eng 143:9–19. https://doi.org/10.1016/j.biosystemseng.2015.12.012

    Article  Google Scholar 

  36. Tsenkova R, Muncan J, Pollner B, Kovacs Z (2018) Essentials of aquaphotomics and its chemometrics approaches. Front Chem 6:1–25. https://doi.org/10.3389/fchem.2018.00363

    Article  CAS  Google Scholar 

  37. Maduro Dias CSA, Nunes HP, Melo TMMV, Rosa HJD, Silva CCG, Borba AES (2021) Application of near infrared reflectance (NIR) spectroscopy to predict the moisture, protein, and fat content of beef for gourmet hamburger preparation. Livest Sci 254:104772. https://doi.org/10.1016/j.livsci.2021.104772

    Article  Google Scholar 

  38. Pasquini C (2018) Near infrared spectroscopy: a mature analytical technique with new perspectives– A review. Anal Chim Acta 1026:8–36. https://doi.org/10.1016/j.aca.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  39. Huang L, Zhao J, Chen Q, Zhang Y (2014) Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem 145:228–236. https://doi.org/10.1016/j.foodchem.2013.06.073

    Article  CAS  PubMed  Google Scholar 

  40. Kamruzzaman M, Sun D-W (2016) Introduction to hyperspectral imaging technology. In: Sun D-W (ed) Computer vision technology for food quality evaluation, 2nd edn. Academic, pp 111–139. https://doi.org/10.1016/B978-0-12-802232-0.00005-0

  41. Ahmed MW, Hossainy SJ, Khaliduzzaman A, Emmert JL, Kamruzzaman M (2023) Non-destructive optical sensing technologies for advancing the egg industry toward industry 4.0: a review. Compr Rev Food Sci Food Saf 22:4378–4403. https://doi.org/10.1111/1541-4337.13227

    Article  PubMed  Google Scholar 

  42. Chakravartula SSN, Bandiera A, Nardella M, Bedini G, Ibba P, Massantini R, Moscetti R (2023) Computer vision-based smart monitoring and control system for food drying: a study on carrot slices. Comput Electron Agric 206:107654. https://doi.org/10.1016/j.compag.2023.107654

    Article  Google Scholar 

  43. Raponi F, Moscetti R, Chakravartula SSN, Fidaleo M, Massantini R (2022) Monitoring the hot-air drying process of organically grown apples (cv. Gala) using computer vision. Biosyst Eng 223:1–13. https://doi.org/10.1016/j.biosystemseng.2021.07.005

    Article  CAS  Google Scholar 

  44. Xiao Z, Wang J, Han L, Guo S, Cui Q (2022) Application of machine vision system in food detection. Front Nutr 9:1–7. https://doi.org/10.3389/fnut.2022.888245

    Article  Google Scholar 

  45. Zhang L, Zhang M, Mujumdar AS (2023) Terahertz spectroscopy: a powerful technique for food drying research. Food Rev Int 39(3):1733–1750. https://doi.org/10.1080/87559129.2021.1936004

    Article  CAS  Google Scholar 

  46. Khan PW, Yung-Cheol B, Park N (2020) IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors 20(10). https://doi.org/10.3390/s20102990

  47. Kushwah A, Gaur Mk, Kumar A, Singh P (2022) Application of ANN and prediction of drying behavior of mushroom drying in side hybrid greenhouse solar dryer: an experimental validation. J Therm Eng 8(2):221–234. https://doi.org/10.18186/thermal.1086189

    Article  Google Scholar 

  48. Zhu L, Spachos P, Pensini E, Plataniotis KN (2021) Deep learning and machine vision for food processing: a survey. Curr Res Food Sci 4:233–249. https://doi.org/10.1016/j.crfs.2021.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santhi R, Abirami, Muthuswamy P (2023) Industry 5.0 or industry 4.0S? Introduction to industry 4.0 and a peek into the prospective industry 5.0 technologies. Int J Interact Des Manuf 17(2):947–979. https://doi.org/10.1007/s12008-023-01217-8

    Article  Google Scholar 

  50. Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18(12):590–598. https://doi.org/10.1016/j.tifs.2007.06.001

    Article  CAS  Google Scholar 

  51. Khan MIH, Joardder MUH, Karim MA (2022) Application of machine learning-based approach in food drying: opportunities and challenges. Dry Technol 40(6):1051–1067. https://doi.org/10.1080/07373937.2020.1853152

    Article  Google Scholar 

  52. Merino A, Alves R, Acebes LF, Prada C (2017) Modeling and simulation of a beet pulp dryer for a training simulator. Dry Technol 35(14):1765–1780. https://doi.org/10.1080/07373937.2016.1275674

    Article  CAS  Google Scholar 

  53. Çakmak G, Yildiz C (2011) The prediction of seedy grape drying rate using a neural network method. Comput Electron Agric 75(1):132–138. https://doi.org/10.1016/j.compag.2010.10.008

    Article  Google Scholar 

  54. Leys L, Nuytten G, Lammens J, Pieter-Jan VB, Corver J, Vervaet C, De Beer T (2021) A NIR-based study of desorption kinetics during continuous spin freeze-drying. Pharmaceutics 13(12):2168. https://doi.org/10.3390/pharmaceutics13122168

    Article  PubMed  PubMed Central  Google Scholar 

  55. Parikh D (2014) Solids drying: basics and applications. Chem Eng 1:42–45

    Google Scholar 

  56. Ishikawa D, Ueno G, Fujii T (2017) Estimation method of moisture content at the meat surface during drying process by NIR spectroscopy and its application for monitoring of water activity. Jpn J Food Eng 18(3):135–143. https://doi.org/10.11301/jsfe.17493

    Article  Google Scholar 

  57. Achata EM, Esquerre C, Shikha KO, Tiwari BK, O’Donnell CP (2021) Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky. Innov Food Sci Emerg Technol 69:102611. https://doi.org/10.1016/j.ifset.2021.102611

    Article  CAS  Google Scholar 

  58. Amjad W, Munir A, Sturm B (2020) Development of an imaging system for spatially real-time measurement of drying parameters in industrial drying units. Agric Eng Int: CIGR J 22(4):238–249

    Google Scholar 

  59. Collell C, Gou P, Arnau J, Comaposada J (2011) Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy. Food Chem 129(2):601–607. https://doi.org/10.1016/j.foodchem.2011.04.073

    Article  CAS  PubMed  Google Scholar 

  60. Sinelli N, Casiraghi E, Barzaghi S, Brambilla A, Giovanelli G (2011) Near infrared (NIR) spectroscopy as a tool for monitoring blueberry osmo–air dehydration process. Food Res Int 44(5):1427–1433. https://doi.org/10.1016/j.foodres.2011.02.046

    Article  CAS  Google Scholar 

  61. Mensink MA, Bockstal PJV, Pieters S, Laurens DM, Frijlink HW, Maarschalk KV, Voort HJL, De Beer T (2015) In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability. Int J Pharm 496(2):792–800. https://doi.org/10.1016/j.ijpharm.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  62. Campos MI, Mussons ML, Antolin G, Debán L, Pardo R (2017) On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy. Meat Sci 126:29–35. https://doi.org/10.1016/j.meatsci.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  63. Moscetti R, Flavio R, Ferri S, Colantoni A, Monarca D, Massantini R (2018) Real-time monitoring of organic apple (var. Gala) during hot-air drying using near-infrared spectroscopy. J Food Eng 222:139–150. https://doi.org/10.1016/j.jfoodeng.2017.11.023

    Article  Google Scholar 

  64. Phetpan K, Udompetaikul V, Sirisomboon P (2019) In-line near infrared spectroscopy for the prediction of moisture content in the tapioca starch drying process. Powder Technol 345:608–615. https://doi.org/10.1016/j.powtec.2019.01.050

    Article  CAS  Google Scholar 

  65. Liu W, Zhang M, Bhandari B, Yu D (2021) A novel combination of LF-NMR and NIR to intelligent control in pulse-spouted microwave freeze drying of blueberry. LWT 137:110455. https://doi.org/10.1016/j.lwt.2020.110455

    Article  CAS  Google Scholar 

  66. Sturm B, Moscetti R, Crichton SOJ, Raut S, Bantle M, Massantini R (2019) Feasibility of Vis/NIR spectroscopy and image analysis as basis of the development of smart-drying technologies. In IDS 2018–21st International Drying Symposium, València, Spain, 9:11–14. https://doi.org/10.4995/ids2018.2018.7616

  67. Cozzolino D, Phan ADT, Netzel M, Smyth H, Sultanbawa Y (2021) Assessing the interaction between drying and addition of maltodextrin to Kakadu plum powder samples by two dimensional and near infrared spectroscopy. Spectrochim Acta A 247:119121. https://doi.org/10.1016/j.saa.2020.119121

    Article  CAS  Google Scholar 

  68. Malvandi A, Feng H, Kamruzzaman M (2022) Application of NIR spectroscopy and multivariate analysis for non-destructive evaluation of apple moisture content during ultrasonic drying. Spectrochim Acta A 269:120733. https://doi.org/10.1016/j.saa.2021.120733

    Article  CAS  Google Scholar 

  69. Kapoor R, Malvandi A, Feng H, Kamruzzaman M (2022) Real-time moisture monitoring of edible coated apple chips during hot air drying using miniature NIR spectroscopy and chemometrics. LWT 154:112602. https://doi.org/10.1016/j.lwt.2021.112602

    Article  CAS  Google Scholar 

  70. Ferreira MVS, Malvandi A, Lee Y, Kamruzzaman M (2023) Advanced AI-powered drying system with near-infrared assistance for precise endpoint prediction in apple slice drying (Report Q4). Center for Advanced Research in Drying (CARD), Urbana-Champaign/Washington, US

  71. Jin W, Zhang M, Mujumdar AS et al (2024) Application of portable NIR spectroscopy for instant prediction of the product quality of apple slices during hot air-assisted radio frequency drying. Food Bioprocess Technol. https://doi-org.ez30.periodicos.capes.gov.br/https://doi.org/10.1007/s11947-024-03343-x

    Article  Google Scholar 

  72. Yu P, Huang M, Zhang M, Yang B (2019) Optimal wavelength selection for hyperspectral imaging evaluation on vegetable soybean moisture content during drying. Appl Sci 9(2):331. https://doi.org/10.3390/app9020331

    Article  Google Scholar 

  73. Pu Y-Y, Sun D-W (2016) Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innov Food Sci Emerg Technol 33:348–356. https://doi.org/10.1016/j.ifset.2015.11.003

    Article  Google Scholar 

  74. Amjad W, Crichton SOJ, Munir A, Hensel O, Sturm B (2018) Hyperspectral imaging for the determination of potato slice moisture content and chromaticity during the convective hot air drying process. Biosyst Eng 166:170–183. https://doi.org/10.1016/j.biosystemseng.2017.12.001

    Article  Google Scholar 

  75. Ren Y, Sun D-W (2022) Monitoring of moisture contents and rehydration rates of microwave vacuum and hot air dehydrated beef slices and splits using hyperspectral imaging. Food Chem 382:132346. https://doi.org/10.1016/j.foodchem.2022.132346

    Article  CAS  PubMed  Google Scholar 

  76. Saleh RM, Kulig B, Arefi A, Hensel O, Sturm B (2022) Prediction of total carotenoids, color, and moisture content of carrot slices during hot air drying using non-invasive hyperspectral imaging technique. J Food Process Preserv 46(9):1–20. https://doi.org/10.1111/jfpp.16460

    Article  CAS  Google Scholar 

  77. Ndisya J, Gitau A, Mbuge D, Arefi A, Bădulescu L, Pawelzik E, Hensel O, Sturm B (2021) Vis-NIR hyperspectral imaging for online quality evaluation during food processing: a case study of hot air drying of purple-speckled cocoyam (Colocasia esculenta (L.) Schott). Processes 9(10). https://doi.org/10.3390/pr9101804

  78. Crichton S, Shrestha L, Hurlbert A, Sturm B (2017) Use of hyperspectral imaging for the prediction of moisture content and chromaticity of raw and pretreated apple slices during convection drying. Dry Technol 36(7):804–816. https://doi.org/10.1080/07373937.2017.1356847

    Article  CAS  Google Scholar 

  79. Liu Y, Sun Y, Xie A, Yu H, Yin Y, Li X, Duan X (2017) Potential of hyperspectral imaging for rapid prediction of anthocyanin content of purple-fleshed sweet potato slices during drying process. Food Anal Methods 10(12):3836–3846. https://doi.org/10.1007/s12161-017-0950-y

    Article  Google Scholar 

  80. Lin LX, Xu J-L, Sun D-W (2020) Evaluating drying feature differences between ginger slices and splits during microwave-vacuum drying by hyperspectral imaging technique. Food Chem 332:127407. https://doi.org/10.1016/j.foodchem.2020.127407

    Article  CAS  PubMed  Google Scholar 

  81. Chen X, Jiao Y, Liu B, Chao W, Duan X, Yue T (2022) Using hyperspectral imaging technology for assessing internal quality parameters of persimmon fruits during the drying process. Food Chem 386:132774. https://doi.org/10.1016/j.foodchem.2022.132774

    Article  CAS  PubMed  Google Scholar 

  82. Yang Q, Sun D-W, Cheng W (2017) Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J Food Eng 192:53–60. https://doi.org/10.1016/j.jfoodeng.2016.07.015

    Article  CAS  Google Scholar 

  83. Arefi A, Sturm B, Hensel O, Raut S (2023) NIR monochrome imaging for monitoring of apple drying process: light-emitting diode and band-pass filter imaging techniques. Food Biosci 54. https://doi.org/10.1016/j.fbio.2023.102898. 102 Phetpan 8

  84. Zubkova K, Sherstjuk V (2023) Neuro-fuzzy control of spray drying food machine. CEUR Workshop Proc 3373:129–145

    Google Scholar 

  85. Zareiforoush H, Minaei S, Alizadeh MR, Banakar A (2015) Potential applications of computer vision in quality inspection of rice: a review. Food Eng Rev 7(3):321–345. https://doi.org/10.1007/s12393-014-9101-z

    Article  Google Scholar 

  86. Bantle M, Christian AK, Claussen IC, Tolstorebrov I (2019) Influence of the low temperature drying process on optical alternations of organic apple slices. Proceedings of the 21st International Drying Symposium 11–14. https://doi.org/10.4995/ids2018.2018.7551

  87. Moscetti R, Chakravartula SSN, Bandiera A, Bedini G, Massantini R (2020) Computer vision technology for quality monitoring in smart drying system. IEEE Int Workshop Metrol Agric for. 134–138

  88. Hosseinpour S, Rafiee S, Mohtasebi SS, Aghbashlo M (2013) Application of computer vision technique for on-line monitoring of shrimp color changes during drying. J Food Eng 115(1):99–114. https://doi.org/10.1016/j.jfoodeng.2012.10.003

    Article  Google Scholar 

  89. Onwude DI, Hashim N, Abdan K, Janius R, Chen G (2018a) Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying. Comput Electron Agric 150:178–187. https://doi.org/10.1016/j.compag.2018.04.015

    Article  Google Scholar 

  90. Sampson DJ, Chang YK, Rupasinghe HPV, Zaman QUZ (2014) A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J Food Eng 127:49–57. https://doi.org/10.1016/j.jfoodeng.2013.11.016

    Article  Google Scholar 

  91. Zhang W, Liu T, Ueland M, Forbes SL, Wang RX, Su SW (2020) Design of an efficient electronic nose system for odour analysis and assessment. Meas: J Int Meas Confed 165:108089. https://doi.org/10.1016/j.measurement.2020.108089

    Article  Google Scholar 

  92. Iheonye A, Gariepy Y, Raghavan V (2020) Computer vision for real-time monitoring of shrinkage for peas dried in a fluidized bed dryer. Dry Technol 38(1–2):130–146. https://doi.org/10.1080/07373937.2019.1649277

    Article  Google Scholar 

  93. Nadian MH, Abbaspour-Fard MH, Martynenko A, Golzarian MR (2017) An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system. Comput Electron Agric 137:138–149. https://doi.org/10.1016/j.compag.2017.04.001

    Article  Google Scholar 

  94. Onwude DI, Hashim N, Abdan K, Janius R, Chen G (2018b) The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying. J Sci Food Agric 98(4):1310–1324. https://doi.org/10.1002/jsfa.8595

    Article  CAS  PubMed  Google Scholar 

  95. Sharma S, Dhalsamant K, Tripathy PP (2019) Application of computer vision technique for physical quality monitoring of turmeric slices during direct solar drying. J Food Meas Charact 13(1):545–558. https://doi.org/10.1007/s11694-018-9968-0

    Article  Google Scholar 

  96. Li X, Liu Y, Gao Z, Xie Y, Wang H (2021) Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control. J Food Eng 292:110253. https://doi.org/10.1016/j.jfoodeng.2020.110253

    Article  Google Scholar 

  97. Wang D, Martynenko A, Corscadden K, He Q (2017) Computer vision for bulk volume estimation of apple slices during drying. Dry Technol 35(5):616–624. https://doi.org/10.1080/07373937.2016.1196700

    Article  Google Scholar 

  98. Hosseinpour S, Rafiee S, Aghbashlo M, Mohtasebi SS (2015) Computer vision system (CVS) for in-line monitoring of visual texture kinetics during shrimp (Penaeus spp.) drying. Drying Technol 33(2):238–254. https://doi.org/10.1080/07373937.2014.947513

    Article  CAS  Google Scholar 

  99. Kurtulm S, Rafiee S, Mohtasebi SS, Aghbashlo M (2013) Application of computer vision technique for on-line monitoring of shrimp color changes during drying. J Food Eng 115(1):99–114. https://doi.org/10.1016/j.jfoodeng.2012.10.003

    Article  Google Scholar 

  100. Li T, Tong J, Liu M, Yao M, Xiao Z, Li C (2022) Online detection of impurities in corn deep-bed drying process utilizing machine vision. Foods 11(24). https://doi.org/10.3390/foods11244009

  101. Pei Y, Li Z, Ling C, Jiang L, Wu X, Song C, Li J, Song F, Xu W (2022) An improvement of far-infrared drying for ginger slices with computer vision and fuzzy logic control. J Food Meas Charact 16(5):3815–3831. https://doi.org/10.1007/s11694-022-01453-8

    Article  Google Scholar 

  102. Muruganantham P, Samrat NH, Islam N, Johnson J, Wibowo S, Grandhi S (2023) Rapid estimation of moisture content in unpeeled potato tubers using hyperspectral imaging. Appl Sci 13(1). https://doi.org/10.3390/app13010053

  103. Pu Y-Y, Sun D-W (2015) Vis–NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chem 188:271–278. https://doi.org/10.1016/j.foodchem.2015.04.120

    Article  CAS  PubMed  Google Scholar 

  104. Xu W, Zhang F, Wang J, Ma Q, Sun J, Tang Y, Wang J, Wang W (2022) Real-time monitoring of the quality changes in shrimp (Penaeus vannamei) with hyperspectral imaging technology during hot air drying. Foods 11(20). https://doi.org/10.3390/foods11203179

  105. Przybył K, Gawałek J, Koszela K (2023) Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders. J Food Sci Technol 60(3):809–819. https://doi.org/10.1007/s13197-020-04537-9

    Article  CAS  PubMed  Google Scholar 

  106. Kurtulmuş F, Gürbüz O, Deǧirmencioǧlu N (2014) Discriminating drying method of tarhana using computer vision. J Food Process Eng 37(4):362–374. https://doi.org/10.1111/jfpe.12092

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Center for Advanced Research in Drying (CARD), a U.S. National Science Foundation Industry University Cooperative Research Center. CARD is located at Worcester Polytechnic Institute and the University of Illinois at Urbana-Champaign (co-site).

Author information

Authors and Affiliations

Authors

Contributions

M. K. and M.V. d. S. F. conceptualized and designed the manuscript. M.V. d. S. F. wrote the majority of the manuscript text and prepared figures, M.W. A. and M. O. wrote some parts. All authors reviewed, edited and approved the manuscript.

Corresponding author

Correspondence to Mohammed Kamruzzaman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Ferreira, M.V., Ahmed, M.W., Oliveira, M. et al. AI-Enabled Optical Sensing for Smart and Precision Food Drying: Techniques, Applications and Future Directions. Food Eng Rev 17, 75–103 (2025). https://doi.org/10.1007/s12393-024-09388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12393-024-09388-0

Keywords