Skip to main content
Log in

Crystallization Process in the Sugar Industry: A Discussion On Fundamentals, Industrial Practices, Modeling, Estimation and Control

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The sugar industry plays a crucial role in numerous economies worldwide, and projections indicate an increase in sugar demand in the coming years. Sugar manufacturing is a complex and highly energy-demanding process, encompassing various sub-processes, including the milling of sugarcane, clarification of raw cane juice, evaporation of syrup, crystallization of syrup, and centrifugation. The crystallization process involves extracting solid sucrose crystals from a supersaturated solution, with supersaturation being a crucial variable. Most previous review articles have focused on specific topics of the crystallization process in the sugar industry. This review aims to provide a broader and updated discussion. It explores various aspects, such as the fundamentals of the process in the sugar industry, a technological description of the three-stage operation, and an analysis of the role of supersaturation. The review examines the main process variables, the most commonly used industrial sensors, and their limitations. Additionally, it discusses the main proposals and approaches found in the literature related to monitoring, modeling, and control of crystallization in the sugar industry. The article identifies and analyzes some limitations present in the literature, including the selection of instruments for industrial monitoring, confusing references to supersaturation sensors, and the need for proper error analysis in the design of process-focused estimators. In particular, there is an emphasis on including information about error bounds for supersaturation estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

A :

Ash content

abc :

mother liquor parameters

AM :

Averaged crystal size (mm)

B :

Mass fraction of dry substance (\(^\circ\)bx)

c :

concentration

cc :

crystal content (\(\%\))

CV :

coeficient of variation (\(\%\))

\(c_{sol}\) :

solubility coefficient

\(d_v\) :

volume increases

\(D_g\) :

growth rate dispersion (mm\(^{2}/\)s)

F :

flow rate (m\(^{3}/\)s)

G :

crystal growth rate (mm/s)

J :

crystallization rate (kg/s)

L :

crystals length (mm)

m :

mass (kg)

\(\dot{m}\) :

mass flow rate (kg/s)

N :

number of crystals

n :

crystal population density

P :

purity (mass fraction of sugar \(\%\))

p :

pressure (bar)

\(q_{s/w}\) :

Sucrose to water ratio for supersaturated solutions (g/g)

\(q_{ns/w}\) :

non sugar/water ratio (g/g)

\(q_{s/w,sat}\) :

Sucrose to water ratio for saturated pure solutions (Solubility) (g/g)

\(S\!S\) :

Supersaturation

\(S\!S_{cr}\) :

Limit Supersaturation

T :

temperature (\(^\circ\)C)

t :

time (s)

\(\alpha _c\) :

crystal parameter

\(\kappa\) :

conductivity (\(\%\))

\(\eta\) :

viscosity

\(\mu _j\) :

Distribution moment

\(\rho\) :

density (kg/m\(^{3}\))

i :

impurities

f :

feed

sat :

saturation

s :

dissolved sucrose

c :

crystal

w :

water

cw :

condensate

hs :

heat steam

ml :

mother liquor

mg :

magma

vap :

emmited vapor

ATR:

Attenuated Total Reflection

ASTME:

Time Series Analysis

ANN:

Artificial Neural Network

BDPCA:

Batch Dynamic PCA

BPR:

Boiling Point Rise

CSD:

Crystal Size Distribution

DDSS:

Data Driven Soft-sensors

FTIR:

Fourier transform infrared

HTM:

Heat and mass Transfer

HSS:

Hybrid Soft-sensors

IA:

Image Analysis

KBH:

Knowledge-based hybrid

KP:

Kinetic parameters

LF:

Fuzzy Logic

MBSS:

Model Based Soft-sensors

MSE:

Mean square error

MEP:

Mass, energy and population balance

ME:

Mass and energy balance

MP:

Mass population balance

MoEq:

From Moment Equations

MWPCA:

Moving Window PCA

P[MYAMP:

ID] Pipe and Instrument Diagram

PID:

Proportional-Integral Derivative Controller

PLC:

Programmable Logic Controller

PCA:

Principal Component Analysis

PLS:

Partial Least Squares

RTD:

Resistance Temperature Detector

SVM:

Support Vector Machines

TSVR:

Twin Support Vector Regression

UKF:

Unscented Kalman Filter

MPC:

Model-Based Predictive Control

References

  1. Cheesman O et al (2004) Environmental impacts of sugar production: the cultivation and processing of sugarcane and sugar beet. CABI publishing

  2. de Prada Moraga C, Baeyens Lázaro E, Rivas Pérez R (2009) Introducción a la sección especial de modelado, control y optimización en la industria azucarera. Revista Iberoamericana de Automática e Informática Industrial 6(3):5–9

    Article  Google Scholar 

  3. Zhang J, Meng Y, Wang H et al (2020) Optimization design of cane sugar evaporative crystallizer based on orthogonal test and computational fluid dynamics. J Food Process Eng 43(4):e13355

    Article  Google Scholar 

  4. Arapov DV, Kuritsyn VA, Petrov SM et al (2022) Simulation of the rate of dissolution of sucrose crystals. J Food Eng 318(110):887

    Google Scholar 

  5. Outlook OFA (2021) Oecd-fao agricultural outlook 2021–2030. Outlook 2030

  6. Van der Poel PW, Schiweck H, Schwartz TK (1998) Sugar technology beet and cane sugar manufacture. Verlag Dr Bartens KG, Schiweck, T Schwartz Berlin, pp 479–563

    Book  Google Scholar 

  7. Rozsa L et al (2011) On-line monitoring and control of supersaturation and other massecuite parameters in vacuum pans: a control engineering approach. Int Sugar J 113(1356):853

    CAS  Google Scholar 

  8. Hugot E (1986) Handbook of Cane Sugar Engineering. Elseiver Science Publishers BV, Third, Complety Revised Edition

    Google Scholar 

  9. McCabe WL, Smith JC, Harriott P (1993) Unit Operations of Chemical Engineering, 5th edn. McGraw-hill

  10. Richardson JF, Coulson JM (2002) Coulson and Richardson’s chemical engineering: particle technology and separation processes, vol 2. Butterworth-Heinemann, Fifth Edition edn

    Google Scholar 

  11. Fujiwara M, Nagy ZK, Chew JW et al (2005) First-principles and direct design approaches for the control of pharmaceutical crystallization. J Process Control 15(5):493–504

    Article  CAS  Google Scholar 

  12. Barrett M, McNamara M, Hao H et al (2010) Supersaturation tracking for the development, optimization and control of crystallization processes. Chem Eng Res Des 88(8):1108–1119

    Article  CAS  Google Scholar 

  13. Nagy Z, Aamir E (2012) Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator. Chem Eng Sci 84:656–670

    Article  CAS  Google Scholar 

  14. Nagy ZK, Fevotte G, Kramer H et al (2013) Recent advances in the monitoring, modelling and control of crystallization systems. Chem Eng Res Des 91(10):1903–1922

    Article  CAS  Google Scholar 

  15. Sanzida N, Nagy ZK (2019) Strategic evaluation of different direct nucleation control approaches for controlling batch cooling crystallisation via simulation and experimental case studies. Comput Chem Eng 130(106):559

    Google Scholar 

  16. Zhang F, Du K, Guo L et al (2022) Progress, problems, and potential of technology for measuring solution concentration in crystallization processes. Measurement 187(110):328

    Google Scholar 

  17. Georgieva P, Meireles M, de Azevedo SF (2003) Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena. Chem Eng Sci 58(16):3699–3713

    Article  CAS  Google Scholar 

  18. Honig P (1953) Principles of Sugar Technology, volI. Elsevier Publishing Co

  19. Rozsa L (2008) Sugar crystallization: look for the devil in the details-part 1. Int Sugar J 110(1315):403

    CAS  Google Scholar 

  20. Rozsa L, Arriaza G, Romero M (2015) Advanced control of crystallisation based on the direct use of on-line data on supersaturation: theory and practice. Tech. rep, Santa Ana Sugar Mill, Escuintla, Guatemala

    Google Scholar 

  21. Rozsa L, Arriaza G, Romero M (2015) Advanced control of crystallisation based on the direct use of on-line data on supersaturation: theory and practice. In: Sugar Industry Technologists Annual Meeting, Guangzhou, China

  22. Umo AM, Alabi SB (2016) Predictive model for post-seeding supersaturation of sugar massecuite in a fed-batch evaporative crystalliser. Int J Food Eng 2(2):119–123

    Google Scholar 

  23. Rozsa L, Rozsa J, Kilpinen S (2016) Crystal growth and crystallization control tactics in industrial sugar crystallizers Part 1: crystal growth. Int Sugar J 118(1414):1–15

    Google Scholar 

  24. Grondin-Perez B, Benne M, Chabriat JP (2006) Supervision of C crystallization in Bois Rouge sugar mill using on-line crystal content estimation using synchronous microwave and refractometric brix measurements. J Food Eng 76(4):639–645

    Article  CAS  Google Scholar 

  25. Morales H, di Sciascio F, Aguirre-Zapata E et al (2023) A model-based supersaturation estimator (inferential or soft-sensor) for industrial sugar crystallization process. J Process Control 129(103):065

    Google Scholar 

  26. Asadi M (2006) Beet-sugar handbook. John Wiley & Sons

    Book  Google Scholar 

  27. Baikow V (1982) Manufacture and refining of raw cane sugar, 2nd edn. Elsevier Scientific Publishing Company

  28. Chen J, Chou CC (1993) Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. John Wiley & Sons

    Google Scholar 

  29. Jenkins GH (1966) Introduction to cane sugar technology. Elsevier Publising Company

  30. McGinnis RA (1951) Beet-sugar technology. Reinhold Publishing Corporation

  31. Beckmann W (2013) Crystallization: basic concepts and industrial applications. John Wiley & Sons

    Book  Google Scholar 

  32. Mullin JW (2001) Crystallization, 4th edn. Elsevier

    Google Scholar 

  33. Myerson A (2002) Handbook of industrial crystallization. Butterworth-Heinemann

    Google Scholar 

  34. Tavare NS (2013) Industrial crystallization: process simulation analysis and design. Springer Science & Business Media

  35. TerHorst JH, Schmidt C, Ulrich J (2015) Fundamentals of industrial crystallization. In: Handbook of Crystal Growth. Elsevier, p 1317–1349

  36. Tiller WA (1991) The science of crystallization: microscopic interfacial phenomena. Cambridge University Press

    Book  Google Scholar 

  37. Rozsa L (1996) On-line monitoring of supersaturation in sugar crystallisation. Int Sugar J 98(1176):660–675

    CAS  Google Scholar 

  38. Rozsa L (1997) Sensor performance in monitoring of supersaturation. Int Sugar J 99(1182):263–8

    Google Scholar 

  39. Rozsa L (1998) The SeedMaster Device. For on-line supersaturation measurement and automatic crystalliser seeding. Int Sugar J 100(1200):601–607

  40. Rozsa L (2000) Sucrose solubility in impure cane sugar solutions. Int Sugar J 102(1217):230–2

    CAS  Google Scholar 

  41. Rozsa L (2003) Sensor selection: still an issue in sugar crystallization control. In: Procd. Philippine Sugar Technologist’s Convention

  42. Rozsa L (2006) Seedmaster 2: a universal crystallization transmitter and automatic seeding device. Int Sugar J 1296:683–695

    Google Scholar 

  43. Rozsa L (2008) Sugar crystallization: look for the devil in the details-part 2. Int Sugar J 110(1320):729

    CAS  Google Scholar 

  44. Rozsa L, Koivula K, Mielonen E (2016) Cristalizacion eficiente con el Seedmaster. In: Conference: 10th Congreso ATALAC. At: Veracruz, México

  45. Rózsa L, Rózsa J, Kilpinen S et al (2018) Selection of the operating parameters in sugar crystallization control. In: Conference: Sugar Industry Technologists’, Bonita Springs, Florida, USA

  46. White E (1998) A review of the crystallization of sugar. In: Mixing and Crystallization: selected papers from the international conference on mixing and crystallization held at Tioman Island, Malaysia in April 1998, Springer, pp 329–336

  47. Giulietti M, Seckler M, Derenzo S et al (2001) Industrial crystallization and precipitation from solutions: state of the technique. Braz J Chem Eng 18:423–440

    Article  CAS  Google Scholar 

  48. Braatz RD (2002) Advanced control of crystallization processes. Annu Rev Control 26(1):87–99

    Article  Google Scholar 

  49. Braatz RD, Fujiwara M, Ma DL et al (2002) Simulation and new sensor technologies for industrial crystallization: a review. Int J Modern Phys B 16(01n02):346–353

  50. Frenzel S (2020) Crystallization schemes in the sugar industry. ChemBioEng Rev 7(5):159–166

    Article  CAS  Google Scholar 

  51. Broadfoot R, LopesFraga GL (2023) Increasing our understanding of supersaturation and the use of massecuite dry substance in pan control–part 1. In: Proceedings of the 44th Annual Conference of the Australian Society of Sugar Cane Technologists (ASSCT 2023), Australian Society of Sugar Cane Technologists (ASSCT), pp 322–339

  52. Mullin J, Söhnel O (1977) Expressions of supersaturation in crystallization studies. Chem Eng Sci 32(7):683–686

    Article  CAS  Google Scholar 

  53. Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19(12):930–934

    Article  Google Scholar 

  54. Mathlouthi M, Reiser P (1995) Sucrose: properties and applications. Springer Science & Business Media

  55. Mazaeda R, de Prada C (2011) Cristalizadores de azúcar por evaporación al vacío. In: José R. Perán González (ed) Libro blanco del control automático en la industria de la caña de azúcar. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Red de automatización y control de la industria de transformación de la caña de azúcar, chap4, p 97–126, https://www.researchgate.net/profile/Raul-Rivas-Perez/publication/275154825_Generadores_de_vapor_de_bagazo_y_su_control/links/5534113d0cf27acb0def8f3d/Generadores-de-vapor-de-bagazo-y-su-control.pdf

  56. Randolph A, Larson M (1971) Theory of particulate processes: analysis and techniques of continuous crystallization. Academic Press, New York

    Google Scholar 

  57. PazSuárez LA (2010) Estratégias avançadas de modelização e controlo para processos industriais não lineares e descontínuos: aplicação em cristalizadores industriais de açucar. PhD thesis, Universidade do Porto

  58. VanHook A (1981) Growth of sugar crystals: a review. Sugar Tech Rev 8(1):41–679

    CAS  Google Scholar 

  59. Zumstein R, Rousseau R (1987) Growth rate dispersion by initial growth rate distributions and growth rate fluctuations. AIChE J 33(1):121–129

    Article  CAS  Google Scholar 

  60. Bubnik Z, Kadlec P (1995) Sucrose solubility. In: Mathlouthi M, Reiser P (eds) Sucrose: Properties and Applications, First edn. Springer Science+Business Media Dordrecht, Paris, chap5, p 101–124

  61. Vavrinecz G (1962) Neue tabelle über die löslichkeit reiner saccharose in wasser. Zuckerindustrie 12:481–487

    CAS  Google Scholar 

  62. Vavrinecz G (1978) Formation and composition of beet molasses, I- the equation for solubility. Sugar Tech Rev 6:117–129

    Google Scholar 

  63. Ostwald W (1900) Über die vermeintliche isomerie des roten und gelben quecksilberoxyds und die oberflächenspannung fester körper. Zeitschrift für physikalische Chemie 34(1):495–503

    Article  Google Scholar 

  64. Miers HA, Isaac F (1906) XLVII.-The refractive indices of crystallising solutions, with especial reference to the passage from the metastable to the labile condition. J Chem Soc Trans 89:413–454

    Article  CAS  Google Scholar 

  65. Sanchez K, Bolaños E, Mendez J et al (2020) Effects of agitation rates over metastable zone width (mszw) of concentration for cane sugar crystallization efectos de la velocidad de agitación en la amplitud de la zona metaestable (mszw) de concentración para la cristalización de azúcar de caña. Revista Mexicana de Ingeniería Química 19(2):507–520

    Google Scholar 

  66. Broadfoot R, Wright P (1972) Nucleation studies. Queensland Soc Sugar Cane Technol Proc

  67. Frew JA (1973) Optimal control of batch raw sugar crystallization. Ind Eng Chem Process Des Develop 12(4):460–467

    Article  CAS  Google Scholar 

  68. Falcón F, Peláez M, Esturo C (1995) Manual de operaciones para la producción de azúcar crudo de caña. Centro Impresiones Gráficas del Azúcar, Dirección de tecnología, Cuba, Minaz

    Google Scholar 

  69. Damour C, Benne M, Grondin-Perez B et al (2010) Soft-sensor for industrial sugar crystallization: on-line mass of crystals, concentration and purity measurement. Control Eng Pract 18(8):839–844

    Article  Google Scholar 

  70. Vaccari G, Mantovani G (1995) Sucrose crystallisation. In: Sucrose: properties and applications, First edn. Springer Science+Business Media Dordrecht, chap5, p 33–74

  71. Martins PM, Rocha FA, Rein P (2005) Modeling sucrose evaporative crystallization. part 2. investigation into crystal growth kinetics and solubility. Indust Eng Chem Res 44(23):8865–8872

  72. Ziegler J (1979) Sugar boiling the syrups in the vacuum pans. Sugar J 42:27

    CAS  Google Scholar 

  73. Grut E (1937) Šetřenì o přesycenì a viskozitě v refrižerantech pro prvnì produkt [Investigation of saturation and viscosity by cooling crystallization of A-product]. Dìl II. Rozpustnost sacharosy v čistè vodě [Part II. Solubility of sucrose in pure water]. Dìl III. Rozpustnost sacharosy v nečistỳch roztocìch [Part III. Solubility of sucrose in impure sucrose solutions]. Listy Cukrov 56:53–55,62–64

  74. Morales H, Aguirre-Zapata E, di Sciascio F et al (2022) Estrategias de control con referencia variable aplicadas al proceso de cristalización c en la industria azucarera. Revista Iberoamericana de Automática e Informática industrial 20(1):81–92. https://doi.org/10.4995/riai.2022.17096

  75. Mazaeda R, de Prada C, Merino A et al (2009) A hybrid object-oriented library for the simulation of sugar houses. IFAC Proceedings Volumes 42(17):92–97

    Article  Google Scholar 

  76. Radford D, Cox M (1986) The use of electrical properties measured at radio frequencies for pan boiling and Brix control [sugar industry]. Zuckerindustrie (Germany, FR)

  77. Mesbah A (2010) Optimal operation of industrial batch crystallizers a nonlinear model-based control approach. PhD thesis, Universidad Técnica de Delft

  78. Bolanos-Reynoso E, Xaca-Xaca O, Alvarez-Ramirez J et al (2008) Effect analysis from dynamic regulation of vacuum pressure in an adiabatic batch crystallizer using data and image acquisition. Ind Eng Chem Res 47(23):9426–9436

    Article  CAS  Google Scholar 

  79. Chorão JMN (1995) Operação assistida por comutador dum cristalizador industrial de açácar. PhD thesis, Faculdade de Engenharia, Departamento de Eng. Química. Universidade de Porto

  80. Kulkarni DP et al (1996) Cane sugar manufacture in India. Sugar Technologists’ Association of India

  81. Taylor M, Getaz M et al (2010) Sensors for crystallisation control in vacuum pans-a review of fives fletcher experience over the past 25 years. Int Sugar J 112(1344):678–685

    CAS  Google Scholar 

  82. Umo AM, Alabi SB (2016) AdvAnces in Super-Saturation Measurement and Estimation Methods for Sugar Crystallisation Process. Int J Food Eng 2(2):108–112

    Google Scholar 

  83. Klute U et al (2007) Microwave measuring technology for the sugar industry. Int Sugar J 109(1308):749

    CAS  Google Scholar 

  84. Cole E (1956) Computing supersaturation for sucrose solutions. J Am Soc Sugar Beet Technol 9:258–264

    Article  Google Scholar 

  85. Holven AL (1942) Supersaturation in sugar boiling operations continuous automatic measurement. Indust Eng Chem 34(10):1234–1240

    Article  CAS  Google Scholar 

  86. Dunuwila DD, Carroll LB II, Berglund KA (1994) An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions. J Cryst Growth 137(3–4):561–568

    Article  CAS  Google Scholar 

  87. Lewiner F, Klein J, Puel F et al (2001) On-line ATR FTIR measurement of supersaturation during solution crystallization processes: calibration and applications on three solute/solvent systems. Chem Eng Sci 56(6):2069–2084

    Article  CAS  Google Scholar 

  88. zutora (2021) zutora. https://www.zutora.com/about

  89. Saska M (2002) Boiling point elevation of technical sugarcane solutions and its use in automatic pan boiling. Int Sugar J 104:500–508

    CAS  Google Scholar 

  90. Evans L, Trearchis G, Jones C (1970) Simulation study of a vacuum pan sugar crystallizer- Part 2. Sugar y Azucar 65:19–25

    CAS  Google Scholar 

  91. Wright P, White E (1969) A digital simulation of the vacuum pan crystallization process. In: Proceeding of 13 International Society of Sugar Cane Technologists Congress, pp 1697–1710

  92. Peacock S (1995) Predicting physical properties of factory juices and syrups. Int Sugar J 97(1162):571–2

    CAS  Google Scholar 

  93. Wright P, White E (1974) A mathematical model of vacuum pan crystallization. In: Proceedings of ISSCT 15th congress, pp 1546–1560

  94. Hulburt HM, Katz S (1964) Some problems in particle technology: a statistical mechanical formulation. Chem Eng Sci 19(8):555–574

    Article  CAS  Google Scholar 

  95. Ramkrishna D (1985) The status of population balances. Rev Chem Eng 3(1):49–95

    Article  CAS  Google Scholar 

  96. Girolami MW, Rousseau R (1985) Size-dependent crystal growth-a manifestation of growth rate dispersion in the potassium alum-water system. AIChE J 31(11):1821–1828

    Article  CAS  Google Scholar 

  97. Damour C, Benne M, Boillereaux L et al (2010) NMPC of an industrial crystallization process using model-based observers. J Ind Eng Chem 16(5):708–716

    Article  CAS  Google Scholar 

  98. Consuegra R (2012) Modelación matemática del proceso de cocción de la masa cocida “ C " y su vínculo con el control del proceso. Parte I: Modelación matemática. ICIDCA Sobre los Derivados de la Caña de Azúcar 46(1):3–6

  99. Consuegra R (2012) Modelación matemática del proceso de cocción de la masa cocida “ C " y su vínculo con el control del proceso. Parte II: simulación del proceso. ICIDCA Sobre los Derivados de la Caña de Azúcar 46(2):19–22

  100. Feyode Azevedo S, Chorão J, JoaoGoncalves M et al (1993) Monitoring crystallization I: on-line monitoring of white sugar crystallization through software sensors. Int Sugar J 95(1140):483–488

    CAS  Google Scholar 

  101. Feyode Azevedo S, Chorão J, JoaoGoncalves M et al (1994) Monitoring crystallization II: on-line monitoring of white sugar crystallization through software sensors. Int Sugar J 96(1141):18–26

    CAS  Google Scholar 

  102. Meng Y, Yu S, Zhang J et al (2019) Hybrid modeling based on mechanistic and data-driven approaches for cane sugar crystallization. J Food Eng 257:44–55

    Article  CAS  Google Scholar 

  103. Meng Y, Lan Q, Qin J et al (2019) Data-driven soft sensor modeling based on twin support vector regression for cane sugar crystallization. J Food Eng 241:159–165

    Article  CAS  Google Scholar 

  104. Damour C, Benne M, Grondin-Perez B et al (2009) Model based soft-sensor for industrial crystallization: on-line mass of crystals and solubility measurement. Int J Nutr Food Eng 3(6):275–279

    Google Scholar 

  105. Damour C, Benne M, Grondin Perez B et al (2010) Nonlinear predictive control based on artificial neural network model for industrial crystallization. J Food Eng 99(2):225–231

    Article  Google Scholar 

  106. Damour C, Benne M, Boillereaux L et al (2011) Multivariable linearizing control of an industrial sugar crystallization process. J Process Control 21(1):46–54

    Article  CAS  Google Scholar 

  107. Damour C, Benne M, Boillereaux L et al (2012) Energy efficiency improvement of an industrial crystallization process using linearizing control. J Crystn Process Technol 2(2):44–54

    CAS  Google Scholar 

  108. Umo A, Alabi S (2016) An empirical model for the prediction of super-saturation value of massecuite during sugar crystallization process. In: Proc 44th Ann Conf Nigerian Soc Chem Eng, pp 20–22

  109. Lauret P, Boyer H, Gatina JC (2000) Hybrid modelling of a sugar boiling process. Control Eng Pract 8(3):299–310

    Article  Google Scholar 

  110. Mazaeda R, Acebes LF, Rodríguez A et al (2014) Sugar crystallization benchmark. Comput Aided Chem Eng 33:613–618

    Article  CAS  Google Scholar 

  111. Shamim F, Hernández R, Paulen R et al (2016) A hierarchical coordination approach to the optimal operation of a sugar crystallization process. In: Computer Aided Chemical Engineering, vol38. Elsevier, p 703–708

  112. Ditl P, Beranek L, Rieger F et al (1990) Simulation of a stirred sugar boiling pan. Zuckerindustrie 115(8):667–676

    CAS  Google Scholar 

  113. Rawlings JB, Witkowski WR, Eaton JW (1992) Modelling and control of crystallizers. Powder Technol 69(1):3–9

    Article  CAS  Google Scholar 

  114. Feyo de Azevedo S, Goncalves M, Ruiz V et al (1989) Generalized predictive control of a batch evaporative crystallizer. IFAC Proceedings Volumes 22(8):93–98

    Article  Google Scholar 

  115. Suárez LAP, Georgieva P, De Azevedo SF (2011) Nonlinear MPC for fed-batch multiple stages sugar crystallization. Chem Eng Res Des 89(6):753–767

    Article  Google Scholar 

  116. Hassani NSA, Saidi K, Bounahmidi T (2001) Steady state modeling and simulation of an industrial sugar continuous crystallizer. Comput Chem Eng 25(9–10):1351–1370

    Article  Google Scholar 

  117. Georgieva P, Feyo de Azevedo S, Gonçalves MJ et al (2003) Modeling of sugar crystallization through knowledge integration. Eng Life Sci 3(3):146–153

    Article  CAS  Google Scholar 

  118. Jesus CDFD (2004) Validação da simulação dinâmica das etapas de evaporação e cristalização da produção de açúcar com dados obtidos em plantas industriais. PhD thesis, Universidade Federal de São Carlos

  119. Bolaños E, Sánchez KB, UrreaGarcía GR et al (2014) Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty. Indust Eng Chem Res 53(33):13180–13194

    Article  Google Scholar 

  120. Tejerina D, Mazaeda R, de Prada C (2014) Modelling and simulation of the non-ideal mixing behaviour of the crystallization stage in a sugar factory batch crystallizer. Pan 80:100

    Google Scholar 

  121. de Castro BJ, Marciniuk M, Giulietti M et al (2019) Sucrose crystallization: modeling and evaluation of production responses to typical process fluctuations. Braz J Chem Eng 36:1237–1253

    Article  Google Scholar 

  122. Mazaeda R, Cristea SP, de Prada C (2015) Plant-wide hierarchical optimal control of a crystallization process. IFAC-PapersOnLine 48(8):1210–1215

    Article  Google Scholar 

  123. Mazaeda R, Cristea SP, de Prada C (2020) Hierarchically coordinated economic MPC plantwide control of mixed continuous-batch units in process industries with application to a beet sugar plant. Opt Control Appl Methods 41(1):190–214

    Article  Google Scholar 

  124. Felixa EP, Alabia SB, Umob AM (2019) A regression model for estimating sugar crystal size in a fed-batch vacuum evaporative Crystalliser. Chem Eng 75

  125. Osman A, Rajab F (2023) Exploring the dynamic growth of sugar crystals: a volume diffusion non-steady state model under variable conditions. AIP Advances 13(6)

  126. Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft-sensors in the process industry. Comput Chem Eng 33(4):795–814

    Article  CAS  Google Scholar 

  127. Sun K, Liu J, Kang JL et al (2014) Soft sensor development with nonlinear variable selection using nonnegative garrote and artificial neural network. In: Computer Aided Chemical Engineering, vol33. Elsevier, p 883–888

  128. De Wolf S, Cuypers R, Zullo L et al (1996) Model predictive control of a slurry polymerisation reactor. Comput Chem Eng 20:S955–S961

    Article  Google Scholar 

  129. di Sciascio F, Amicarelli AN (2008) Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression. Comput Chem Eng 32(12):3264–3273

    Article  Google Scholar 

  130. Dong H, Shi J, Chen L et al (2023) An online soft sensor based on adaptive double Gaussian Bayesian network. Chemometrics and Intelligent Laboratory Systems p 104895

  131. Doyle FJ III (1998) Nonlinear inferential control for process applications. J Process Control 8(5–6):339–353

    Article  CAS  Google Scholar 

  132. Li Y, Peng T, Sun W et al (2023) A soft sensor model based on CNN-BiLSTM and IHHO algorithm for Tennessee Eastman process. Measurement p 113195

  133. Prasad V, Schley M, Russo LP et al (2002) Product property and production rate control of styrene polymerization. J Process Control 12(3):353–372

    Article  CAS  Google Scholar 

  134. Zhu J, Ge Z, Song Z (2015) Robust semi-supervised mixture probabilistic principal component regression model development and application to soft sensors. J Process Control 32:25–37

    Article  Google Scholar 

  135. Devogelaere D, Rijckaert M, Leon OG et al (2002) Application of feedforward neural networks for soft sensors in the sugar industry. In: VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings., IEEE, pp 2–6

  136. Meng Y, Lu G, Zheng K et al (2014) Research of methods for extracting principal components responding to sucrose supersaturation based soft sensors in cane sugar process. Sens Transducers 162(1):221

    Google Scholar 

  137. Meng Y, Yao T, Yu S et al (2021) Data-driven modeling for crystal size distribution parameters in cane sugar crystallization process. J Food Process Eng 44(4):e13648

    Article  CAS  Google Scholar 

  138. Grondin-Perez B, Benne M, Bonnecaze C et al (2005) Industrial multi-step forward predictor of mother liquor purity of the final stage of a cane sugar crystallisation plant. J Food Eng 66(3):361–367

    Article  Google Scholar 

  139. Chen S, Cowan C, Billings S et al (1990) Parallel recursive prediction error algorithm for training layered neural networks. Int J Control 51(6):1215–1228

    Article  Google Scholar 

  140. Quintana Hernandez P, Bolanos Reynoso E, Miranda Castro B et al (2004) Mathematical modeling and kinetic parameter estimation in batch crystallization. AIChE J 50(7):1407–1417

    Article  CAS  Google Scholar 

  141. Simoglou A, Georgieva P, Martin EB et al (2005) On-line monitoring of a sugar crystallization process. Comput Chem Eng 29(6):1411–1422

    Article  CAS  Google Scholar 

  142. Bakir T, Othman S, Puel F et al (2005) Continuous-discrete observer for crystal size distribution of batch crystallization process. In: Proceedings of the 44th IEEE Conference on Decision and Control, IEEE, pp 6240–6244

  143. Mironescu I, Mironescu C (2006) Image analysis for crystallization process control. J Agroaliment Process Technol 12(1):7–12

    CAS  Google Scholar 

  144. Georgieva P, de Azevedo SF (2006) Application of artificial neural networks in modeling and optimization of batch crystallization processes. Electron Telecommun 4:697–706

    Google Scholar 

  145. Georgieva P, de Azevedo SF (2008) Neural network-based estimation of reaction rates with partly unknown states and completely known kinetics coefficients. In: 2008 4th International IEEE Conference Intelligent Systems, IEEE, pp 7–8

  146. Oliveira C, Georgieva P, Rocha F et al (2009) Artificial neural networks for modeling in reaction process systems. Neural Comput Appl 18:15–24

    Article  Google Scholar 

  147. Lu G, Meng Y, Chen J et al (2014) A nonlinear system modelling approach to industrial cane sugar crystallization. Comput Model New Tecnol 18(9):58–64

    Google Scholar 

  148. El-Abdien OZ, Temerk YM, Abdullah ID et al (2014) Design and evaluation of a full control program for sucrose crystallization based on soft sensor approach. IJEAT pp 226–235

  149. Villanueva D, Posada R, González I et al (2015) Monitoring of a sugar crystallization process with fuzzy logic and digital image processing. J Food Process Eng 38(1):19–30

    Article  CAS  Google Scholar 

  150. Meng Y, Chen J, Lu G et al (2015) Detecting syrup brix in cane sugar crystallization using an improved least squares support vector machine. Int J Control Autom 8(3):171–184

    Article  Google Scholar 

  151. Meng Y, Zheng K, Li W et al (2015) Design and implementation of intelligent integrated measuring and controlling system for sugar cane crystallization process. Int J Smart Sens Intell Syst 8(3):1687–1705

    Google Scholar 

  152. Morales H, di Sciascio F, Amicarelli A (2018) Estimation of supersaturation in the crystallization process of the sugar industry. In: 2018 Argentine Conference on Automatic Control (AADECA), IEEE, pp 1–6

  153. Zhang J, Meng Y, Wu J et al (2020) Monitoring sugar crystallization with deep neural networks. J Food Eng 280(109):965

    Google Scholar 

  154. Romero Bustamante JA, Velazquez-Camilo O, Garcia-Hernandez Á et al (2022) Monitoring of cane sugar crystallization process by multiscale time-series analysis. Chaos, Solitons Fractals 156(111):848

    Google Scholar 

  155. Wu X, Meng Y, Zhang J et al (2023) A modal segmentation of cane sugar crystal via deep neural networks. J Food Eng 348(111):435

    Google Scholar 

  156. Morales H, Aguirre E, di Sciascio F et al (2020) Purity and supersaturation model based estimators for sugar crystallization last stages. In: 27\(^\circ\) Argentine Conference on Automatic Control (AADECA), Buenos Aires, pp 1–6

  157. IEC60751 (2008) International electrotechnical commission standard: industrial platinum resistance thermometers and platinum temperature sensors

  158. Morales H, Aguirre E, Sciascio F et al (2021) Control strategies for the C Crystallization process in the sugar industry. In: RPIC2021: XIX Reunión de Trabajo en procesamineto de la Información y Control, San Juan, Argentina, pp 377–382, 978-987-88-2891-6, http://www.rpic.com.ar/memorias.php

  159. Suárez LAP, Georgieva P, de Azevedo SF (2009) Error tolerant MPC versus PI control-a crystallization case study. In: 2009 European Control Conference (ECC), IEEE, pp 2899–2904

  160. Suárez LAP, Georgieva P, de Azevedo SF (2009) Intelligent predictive control-application to scheduled crystallization processes. In: 2009 International Conference on Adaptive and Intelligent Systems, IEEE, pp 160–165

  161. Suárez LAP, Georgieva P, de Azevedo SF (2011) Model predictive control strategies for batch sugar crystallization process. Advanced Model Predictive Control pp 225–244

  162. Dediós LS, Georgieva P, de Azevedo SF (2006) Linear model predictive control strategies applied to a batch sugar crystallizer. In: 7th Portuguese Conference on Automatic Control–CONTROLO’2006

  163. Galvanauskas V, Georgieva P, de Azevedo SF (2006) Dynamic optimisation of industrial sugar crystallization process based on a hybrid (mechanistic+ ANN) model. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, IEEE, pp 2728–2735

  164. Georgieva P, De Azevedo SF (2007) Neural network-based control strategies applied to a fed-batch crystallization process. Int J Chem Mol Eng 1(12):145–154

    Google Scholar 

  165. Lima FAR, de Moraes MG, Secchi AR et al (2022) Development of a recurrent neural networks-based nmpc for controlling the concentration of a crystallization process. Digital Chem Eng 5(100):052

    Google Scholar 

  166. Meng Y, Zhang J, Qin J et al (2019) Research on the adaptive control in sugar evaporative crystallization using lssvm and sade-elm. Int J Food Eng 15(5–6):20180203

    Article  Google Scholar 

  167. de Prada C, Alonso C, Morilla F et al (2000) Supervision and advanced control in a beet sugar factory. IFAC Proceedings Volumes 33(10):341–346

    Article  Google Scholar 

  168. de Prada C, Cristea S, Mazaeda R (2015) Hierarchical optimal operation of continuous-batch processes. IFAC-PapersOnLine 48(23):294–301

    Article  Google Scholar 

  169. de Prada C, Mazaeda R, Cristea SP (2019) Receding horizon scheduling of processes with shared resources. Comput Chem Eng 125:1–12

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Humberto Morales: Conceptualization, Formal analysis, Writing - Original Draft, Investigation. Fernando di Sciascio: Methodology, Formal Analysis, Writing - Review, Editing, Investigation, Project Administration. Estefania Aguirre-Zapata: Formal Analysis, Writing - Review, Editing, Investigation. Adriana N. Amicarelli: Investigation, Conceptualization, Writing - Review, Supervision, Project Administration.

Corresponding author

Correspondence to Humberto Morales.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, H., di Sciascio, F., Aguirre-Zapata, E. et al. Crystallization Process in the Sugar Industry: A Discussion On Fundamentals, Industrial Practices, Modeling, Estimation and Control. Food Eng Rev (2024). https://doi.org/10.1007/s12393-024-09377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-024-09377-3

Keywords

Navigation