Skip to main content
Log in

Characteristics of Open and Closed Pores, Their Measurement Techniques and Exploitation in Dehydrated Food Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Food dehydration, the process of reducing moisture in food to improve shelf life, is one of the oldest food preservation methods used by the food processing industry. During dehydration, the porous structure within foods undergoes various alterations, significantly impacting both process efficiency and consumer acceptance. The types of pores, namely, open pores, characterized by connectivity to the external surface of the food, and closed pores, which lack external surface access, distinctly influence the dehydration and rehydration kinetics, stability of the dehydrated product, and textural properties of foods, such as hardness, strength, crispness, and chewiness. This study aims to comprehensively investigate the characteristics of open and closed pores and examine their distinct impacts on food attributes. It seeks to explore the mechanisms underlying pore formation and assess the effects of varied dehydration technologies on pore structure. It finally evaluates the applicable measurement methodologies and identifies the challenges and opportunities of measuring pores within the food industry. Furthermore, this study examined the utility of artificial intelligence in porosity modeling and discussed the potential for encapsulating functional compounds within pores. Overall, this comprehensive review provides valuable insights into the distinct characteristics and implications of open and closed pores on dehydrated food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Oikonomopoulou VP, Krokida MK (2013) Novel aspects of formation of Food structure during drying. Dry Technol 31(9):990–1007. https://doi.org/10.1080/07373937.2013.771186

    Article  Google Scholar 

  2. Amit SK, Uddin M, Rahman R, Islam S, Khan MS (2017) A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur 6(1):1–22

    Article  Google Scholar 

  3. Giovagnoli-Vicuña C, Moraga NO, Briones-Labarca V, Pacheco-Pérez P (2017) Quality assessment and mathematical modeling of hot-air convective drying of persimmon (Diospyros kaki L.) fruit. Int J Food Eng. https://doi.org/10.1515/ijfe-2016-0333

    Article  Google Scholar 

  4. Chayjan RA, Dibagar N, Alaei B (2017) Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions. Heat Mass Transf 53(12):3473–3485. https://doi.org/10.1007/s00231-017-2081-9

    Article  CAS  Google Scholar 

  5. Khalloufi S, Almeida-Rivera C, Janssen J, Bongers P (2012) Pseudo-linearity of the shrinkage coefficient and a sensitivity study of collapse and shrinkage functions. Food Res Int 48(2):808–819. https://doi.org/10.1016/j.foodres.2012.06.024

    Article  Google Scholar 

  6. Khalloufi S, Almeida-Rivera C, Bongers P (2009) A theoretical model and its experimental validation to predict the porosity as a function of shrinkage and collapse phenomena during drying. Food Res Int 42(8):1122–1130. https://doi.org/10.1016/j.foodres.2009.05.013

    Article  CAS  Google Scholar 

  7. Joardder MUH, Kumar C, Karim MA (2018) Prediction of porosity of food materials during drying: current challenges and directions. Crit Rev Food Sci Nutr 58(17):2896–2907. https://doi.org/10.1080/10408398.2017.1345852

    Article  PubMed  Google Scholar 

  8. Li T, Li C, Li C, Xu F, Fang Z (2019) Porosity of flowing rice layer: experiments and numerical simulation. Biosyst Eng 179:1–12. https://doi.org/10.1016/j.biosystemseng.2018.12.003

    Article  Google Scholar 

  9. Thibault B, Ratti C, Khalloufi S (2022) A mathematical tool for estimating the efficiency of pore formation during dehydration. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2022.110981

    Article  Google Scholar 

  10. Wang H, Duan X, Zhao L, Duan L, Ren G (2020) Effects of different pretreatments on the pore structure of Chinese yam during microwave freeze drying. Int J Agric Biol Eng 13(4):232–237. https://doi.org/10.25165/j.ijabe.20201304.5605

    Article  Google Scholar 

  11. Liu WC, Duan X, Ren GY, Liu LL, Liu YH (2017) Optimization of microwave freeze drying strategy of mushrooms (Agaricus bisporus) based on porosity change behavior. Dry Technol 35(11):1327–1336. https://doi.org/10.1080/07373937.2017.1319851

    Article  Google Scholar 

  12. Marabi A, Saguy IS (2004) Effect of porosity on rehydration of dry food particulates. J Sci Food Agric 84(10):1105–1110. https://doi.org/10.1002/jsfa.1793

    Article  CAS  Google Scholar 

  13. Rahman MS (2001) Toward prediction of porosity in foods during drying: a brief review. Dry Technol 19(1):1–13. https://doi.org/10.1081/drt-100001349

    Article  CAS  Google Scholar 

  14. Prothon F, Ahrné L, Sjöholm I (2003) Mechanisms and preventiRahmanon of plant tissue collapse during dehydration: a critical review

    Google Scholar 

  15. Dadmohammadi Y, Datta AK (2020) Food as porous media: a review of the dynamics of porous properties during processing. Food Rev Int. https://doi.org/10.1080/87559129.2020.1761376

    Article  Google Scholar 

  16. Qiu J, Khalloufi S, Martynenko A, Van Dalen G, Schutyser M, Almeida-Rivera C (2015) Porosity, bulk density, and volume reduction during drying: review of measurement methods and coefficient determinations. Dry Technol 33(14):1681–1699. https://doi.org/10.1080/07373937.2015.1036289

    Article  Google Scholar 

  17. Wang W, Yang J, Hu D, Pan Y, Wang S, Chen G (2018) Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity. Chem Phys Lett 700:80–87. https://doi.org/10.1016/j.cplett.2018.04.008

    Article  CAS  Google Scholar 

  18. Dullien F (1979) Porous media-fluid transport and pore structure. Academic Press, New York

    Google Scholar 

  19. Khalloufi S, Kharaghani A, Almeida-Rivera C, Nijsse J, van Dalen G, Tsotsas E (2015) Monitoring of initial porosity and new pores formation during drying: a scientific debate and a technical challenge. Trends Food Sci Technol 45(2):179–186. https://doi.org/10.1016/j.tifs.2015.06.011

    Article  CAS  Google Scholar 

  20. Rao MA, Rizvi SS, Datta AK, Ahmed J (2014) Engineering properties of foods. CRC Press

    Book  Google Scholar 

  21. Mendoza F, Verboven P, Ho QT, Kerckhofs G, Wevers M, Nicolaï B (2010) Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. J Food Eng 99(2):206–215

    Article  Google Scholar 

  22. Harker F, Ferguson I (1988) Calcium ion transport across discs of the cortical flesh of apple fruit in relation to fruit development. Physiol Plant 74(4):695–700

    Article  CAS  Google Scholar 

  23. Khan AA, Vincent JF (1990) Anisotropy of apple parenchyma. J Sci Food Agric 52(4):455–466

    Article  Google Scholar 

  24. Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden BE, Wevers M, Hertog ML, Nicolai BM (2013) Characterisation of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biol Technol 75:114–124

    Article  Google Scholar 

  25. Cantre D, East A, Verboven P, Araya XT, Herremans E, Nicolaï BM, Pranamornkith T, Loh M, Mowat A, Heyes J (2014) Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography. Postharvest Biol Technol 92:79–86

    Article  CAS  Google Scholar 

  26. Aouaini F, Knani S, Yahia MB, Lamine AB (2015) Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution. Physica A Stat Mech Appl 432:373–390

    Article  Google Scholar 

  27. Kuroki S, Oshita S, Sotome I, Kawagoe Y, Seo Y (2004) Visualization of 3-D network of gas-filled intercellular spaces in cucumber fruit after harvest. Postharvest Biol Technol 33(3):255–262

    Article  Google Scholar 

  28. Léonard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85(1):154–162

    Article  Google Scholar 

  29. Rahman MS, Al-Zakwani I, Guizani N (2005) Pore formation in apple during air-drying as a function of temperature: porosity and pore-size distribution. J Sci Food Agric 85(6):979–989. https://doi.org/10.1002/jsfa.2056

    Article  CAS  Google Scholar 

  30. Nguyen TK, Mondor M, Ratti C (2018) Shrinkage of cellular food during air drying. J Food Eng 230:8–17. https://doi.org/10.1016/j.jfoodeng.2018.02.017

    Article  CAS  Google Scholar 

  31. Donis-Gonzalez IR, Guyer DE, Pease A, Barthel F (2014) Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging. Biosyst Eng 117:104–113

    Article  Google Scholar 

  32. Joardder MUH, Karim A, Kumar C, Brown RJ (2016) Porosity: establishing the relationship between drying parameters and dried food quality. Springer

    Book  Google Scholar 

  33. Wang D, Martynenko A (2016) Estimation of total, open-, and closed-pore porosity of apple slices during drying. Dry Technol 34(8):892–899. https://doi.org/10.1080/07373937.2015.1084632

    Article  Google Scholar 

  34. Thibault B, Ratti C, Khalloufi S (2021) The normalized air content: a novel and reliable concept to assess pore formation during dehydration. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2021.110733

    Article  Google Scholar 

  35. Zdravkov B, Čermák J, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Open Chem 5(2):385–395. https://doi.org/10.2478/s11532-007-0017-9

    Article  CAS  Google Scholar 

  36. Joardder MUH (2016) A study on pore formation and evolution, and its effect on food quality during intermittent microwave-convective drying (IMCD). Queensland University of Technology

    Google Scholar 

  37. Kaneko K (1994) Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. J Membr Sci 96(1–2):59–89

    Article  CAS  Google Scholar 

  38. Webb PA (2001) Volume and density determinations for particle technologists. Micromeritics Instrum Corp 2(16):01

    Google Scholar 

  39. Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, Ramsay J, Sing K, Unger K (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66(8):1739–1758

    Article  CAS  Google Scholar 

  40. Daïan J-F (2010) Equilibre et transferts en milieux poreux I-Etats d’équilibre

    Google Scholar 

  41. Sahin S, Sumnu SG (2006) Physical properties of foods. Springer Science & Business Media

    Google Scholar 

  42. Rahman MS, Al-Mamun A, Al-Amri IS (2017) Characteristics of pores as measured by porosimetry and microscopy considering spaghetti as a model system. Int J Food Eng 13(8):20160366

    Article  CAS  Google Scholar 

  43. Joardder MUH, Karim M (2022) Drying kinetics and properties evolution of apple slices under convective and intermittent-MW drying. Therm Sci Eng Prog 30:101279. https://doi.org/10.1016/j.tsep.2022.101279

    Article  Google Scholar 

  44. Taghian Dinani S, Hamdami N, Shahedi M, Havet M (2015) Quality assessment of mushroom slices dried by hot air combined with an electrohydrodynamic (EHD) drying system. Food Bioprod Process 94:572–580. https://doi.org/10.1016/j.fbp.2014.08.004

    Article  Google Scholar 

  45. Yang J, Martin A, Richardson S, Wu C-H (2017) Microstructure investigation and its effects on moisture sorption in fried potato chips. J Food Eng 214:117–128. https://doi.org/10.1016/j.jfoodeng.2017.06.034

    Article  CAS  Google Scholar 

  46. Piskov S, Timchenko L, Grimm WD, Rzhepakovsky I, Avanesyan S, Sizonenko M, Kurchenko V (2020) Effects of various drying methods on some physico-chemical properties and the antioxidant profile and ACE Inhibition activity of oyster mushrooms (Pleurotus Ostreatus). Foods. https://doi.org/10.3390/foods9020160

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gogoi B, Alavi S, Rizvi S (2000) Mechanical properties of protein-stabilized starch‐based supercritical fluid extrudates. Int J Food Prop 3(1):37–58

    Article  CAS  Google Scholar 

  48. Ghodki BM, Dadlani G, Ghodki DM, Chakraborty S (2019) Functional whole wheat breads: compelling internal architecture. LWT 108:301–309. https://doi.org/10.1016/j.lwt.2019.03.066

    Article  CAS  Google Scholar 

  49. Masztalerz K, Łyczko J, Lech K, Szumny A, Figiel A (2021) The effect of filtrated osmotic solutions based on chokeberry juice enriched with mint extract on volatile compounds in dried apples. J Food Process Eng. https://doi.org/10.1111/jfpe.13728

    Article  Google Scholar 

  50. Lozano J, Rotstein E, Urbicain M (1980) Total porosity and open-pore porosity in the drying of fruits. J Food Sci 45(5):1403–1407

    Article  Google Scholar 

  51. Brown ZK (2010) The drying of foods using supercritical carbon dioxide. University of Birmingham

    Google Scholar 

  52. Meda L, Ratti C (2005) Rehydration of freeze-dried strawberries at varying temperatures. J Food Process Eng 28(3):233–246

    Article  Google Scholar 

  53. Gueven A, Hicsasmaz Z (2013) Pore structure in food: simulation, measurement and applications. Springer

    Book  Google Scholar 

  54. Nugraha B, Verboven P, Janssen S, Hertog MLATM, Boone M, Josipovic I, Nicolaï BM (2021) Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2021.110640

    Article  Google Scholar 

  55. Carson JK (2002) Prediction of the thermal conductivity of porous foods: a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering, Massey University, Palmerston North, New Zealand, 2002 Massey University

    Google Scholar 

  56. Wang Y, Wu K, Xiao M, Riffat SB, Su Y, Jiang F (2018) Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr Polym 197:284–291

    Article  CAS  PubMed  Google Scholar 

  57. Figura L, Teixeira AA (2007) Food physics: physical properties-measurement and applications. Springer Science & Business Media

    Book  Google Scholar 

  58. Valentina V, Pratiwi RA, Hsiao P, Tseng H, Hsieh J, Chen C (2016) Sensorial characterization of foods before and after freeze-drying. Austin Food Sci 1(6):1–5

    Google Scholar 

  59. Giri SK, Prasad S (2006) Modeling shrinkage and density changes during microwave-vacuum drying of button mushroom. Int J Food Prop 9(3):409–419. https://doi.org/10.1080/10942910600596472

    Article  Google Scholar 

  60. Segura LA, Badillo GM, Alves-Filho O (2014) Microstructural changes of apples (Granny Smith) during drying: visual microstructural changes and possible explanation from capillary pressure data. Dry Technol 32(14):1692–1698

    Article  CAS  Google Scholar 

  61. Porciuncula BD, Segura LA, Laurindo JB (2016) Processes for controlling the structure and texture of dehydrated banana. Dry Technol 34(2):167–176

    Article  CAS  Google Scholar 

  62. Ren GY, Zeng FL, Duan X, Liu LL, Duan B, Wang MM, Liu YH, Zhu WX (2014) The effect of glass transition temperature on the procedure of microwave–freeze drying of mushrooms (Agaricus bisporus). Dry Technol 33(2):169–175. https://doi.org/10.1080/07373937.2014.942912

    Article  CAS  Google Scholar 

  63. Aksoy A, Karasu S, Akcicek A, Kayacan S (2019) Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat. Foods 8(6):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roos YH (2010) Glass transition temperature and its relevance in food processing. Ann Rev Food Sci Technol 1:469–496

    Article  CAS  Google Scholar 

  65. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49:311–319

    Article  Google Scholar 

  66. Hamoud-Agha MM, Allaf K (2019) Instant controlled pressure drop (DIC) technology in food preservation: fundamental and industrial applications. Food Preserv Waste Exploit 1(3):17

    Google Scholar 

  67. Mahiuddin M, Khan MIH, Kumar C, Rahman MM, Karim M (2018) Shrinkage of food materials during drying: current status and challenges. Compr Rev Food Sci Food Saf 17(5):1113–1126

    Article  PubMed  Google Scholar 

  68. Tamer C, Isci A, Kutlu N, Sakiyan O, Sahin S, Sumnu G (2016) Effect of drying on porous characteristics of orange peel. Int J Food Eng 12(9):921–928. https://doi.org/10.1515/ijfe-2016-0075

    Article  Google Scholar 

  69. de Lima MM, Tribuzi G, de Souza JAR, de Souza IG, Laurindo JB, Carciofi BAM (2016) Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT Food Sci Technol 72:501–509

    Article  Google Scholar 

  70. Rybak K, Wiktor A, Kaveh M, Dadan M, Witrowa-Rajchert D, Nowacka M (2022) Effect of thermal and non-thermal technologies on kinetics and the main quality parameters of red bell pepper dried with convective and microwave–convective methods. Molecules 27(7):2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joardder MUH, Kumar C, Brown RJ, Karim MA (2015) A micro-level investigation of the solid displacement method for porosity determination of dried food. J Food Eng 166:156–164. https://doi.org/10.1016/j.jfoodeng.2015.05.034

    Article  CAS  Google Scholar 

  72. Rahman MM, Joardder MUH, Karim A (2018) Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst Eng 169:126–138. https://doi.org/10.1016/j.biosystemseng.2018.02.007

    Article  Google Scholar 

  73. Russo P, Adiletta G, Di Matteo M (2013) The influence of drying air temperature on the physical properties of dried and rehydrated eggplant. Food Bioprod Process 91(3):249–256

    Article  Google Scholar 

  74. Hawlader MNA, Perera CO, Tian M, Yeo KL (2006) Drying of Guava and Papaya: impact of different drying methods. Dry Technol 24(1):77–87. https://doi.org/10.1080/07373930500538725

    Article  CAS  Google Scholar 

  75. Joardder MUH, Kumar C, Karim MA (2017) Food structure: its formation and relationships with other properties. Crit Rev Food Sci Nutr 57(6):1190–1205. https://doi.org/10.1080/10408398.2014.971354

    Article  CAS  PubMed  Google Scholar 

  76. Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AIChE J 57(9):2574–2588

    Article  CAS  Google Scholar 

  77. Hills B, Nott K (1999) NMR studies of water compartmentation in carrot parenchyma tissue during drying and freezing. Appl Magn Reson 17:521–535

    Article  CAS  Google Scholar 

  78. Xiao B, Chang J, Huang X, Liu X (2014) A moisture transfer model for isothermal drying of plant cellular materials based on the pore network approach. Dry Technol 32(9):1071–1081

    Article  Google Scholar 

  79. Khan MIH, Nagy SA, Karim M (2018) Transport of cellular water during drying: an understanding of cell rupturing mechanism in apple tissue. Food Res Int 105:772–781

    Article  CAS  PubMed  Google Scholar 

  80. Ilker R, Szczesniak AS (1990) Structural and chemical bases for texture of plant foodstuffs. J Texture Stud 21(1):1–36

    Article  CAS  Google Scholar 

  81. Seerangurayar T, Al-Ismaili AM, Jeewantha LJ, Al-Nabhani A (2019) Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods. Sol Energy 180:445–455

    Article  Google Scholar 

  82. Sablani SS, Rahman MS (2002) Pore formation in selected foods as a function of shelf temperature during freeze drying. Dry Technol 20(7):1379–1391

    Article  Google Scholar 

  83. Joardder MUH, Brown RJ, Kumar C, Karim MA (2015) Effect of cell wall properties on porosity and shrinkage of dried apple. Int J Food Prop 18(10):2327–2337. https://doi.org/10.1080/10942912.2014.980945

    Article  Google Scholar 

  84. Oyinloye TM, Yoon WB (2020) Effect of freeze-drying on quality and grinding process of food produce: a review. Processes. https://doi.org/10.3390/pr8030354

    Article  Google Scholar 

  85. Lozano J, Rotstein E, Urbicain M (1983) Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. J Food Sci 48(5):1497–1502

    Article  Google Scholar 

  86. Hussain MA, Rahman MS, Ng C (2002) Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network. J Food Eng 51(3):239–248. https://doi.org/10.1016/S0260-8774(01)00063-2

    Article  Google Scholar 

  87. Wang D (2016) Prediction of texture characteristics in apple drying using computer vision

    Google Scholar 

  88. Joardder MUH, Karim MA (2019) Development of a porosity prediction model based on shrinkage velocity and glass transition temperature. Dry Technol 37(15):1988–2004. https://doi.org/10.1080/07373937.2018.1555540

    Article  CAS  Google Scholar 

  89. Sosa N, Salvatori DM, Schebor C (2012) Physico-chemical and mechanical properties of apple disks subjected to osmotic dehydration and different drying methods. Food Bioprocess Technol 5:1790–1802

    Article  CAS  Google Scholar 

  90. Rahman MS (2008) Dehydration and microstructure. In: Advances in food dehydration. CRC, pp 115–140

    Google Scholar 

  91. Nguyen TK, Khalloufi S, Mondor M, Ratti C (2020) Moisture profile analysis of food models undergoing glass transition during air-drying. J Food Eng 281:109995

    Article  CAS  Google Scholar 

  92. Wang D, Zhang M, Wang Y, Martynenko A (2018) Effect of pulsed-spouted bed microwave freeze drying on quality of apple cuboids. Food Bioprocess Technol 11(5):941–952. https://doi.org/10.1007/s11947-018-2061-1

    Article  Google Scholar 

  93. Mounir S, Besombes C, Al-Bitar N, Allaf K (2011) Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of apple and onion. Dry Technol 29(3):331–341

    Article  CAS  Google Scholar 

  94. Ratti C (1994) Shrinkage during drying of foodstuffs. J Food Eng 23(1):91–105

    Article  Google Scholar 

  95. Aprajeeta J, Gopirajah R, Anandharamakrishnan C (2015) Shrinkage and porosity effects on heat and mass transfer during potato drying. J Food Eng 144:119–128. https://doi.org/10.1016/j.jfoodeng.2014.08.004

    Article  Google Scholar 

  96. Erkinbaev C, Ramachandran RP, Cenkowski S, Paliwal J (2019) A comparative study on the effect of superheated steam and hot air drying on microstructure of distillers’ spent grain pellets using X-ray micro-computed tomography. J Food Eng 241:127–135. https://doi.org/10.1016/j.jfoodeng.2018.08.004

    Article  CAS  Google Scholar 

  97. Reis FR (2014) Vacuum drying for extending food shelf-life. Springer

    Book  Google Scholar 

  98. Arévalo-Pinedo A, Murr FEX (2006) Kinetics of vacuum drying of pumpkin (Cucurbita maxima): modeling with shrinkage. J Food Eng 76(4):562–567. https://doi.org/10.1016/j.jfoodeng.2005.06.003

    Article  Google Scholar 

  99. Rahman MS, Al-Amri OS, Al-Bulushi IM (2002) Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. J Food Eng 53(4):301–313

    Article  Google Scholar 

  100. Wu L, Orikasa T, Ogawa Y, Tagawa A (2007) Vacuum drying characteristics of eggplants. J Food Eng 83(3):422–429. https://doi.org/10.1016/j.jfoodeng.2007.03.030

    Article  Google Scholar 

  101. Ratti C (2008) Freeze and vacuum drying of foods. Drying technologies in food processing. John Wiley & Sons, pp 225–251

    Google Scholar 

  102. Acar C, Dincer I, Mujumdar A (2022) A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Dry Technol 40(6):1029–1050

    Article  Google Scholar 

  103. Roratto TB, Monteiro RL, Carciofi BA, Laurindo JB (2021) An innovative hybrid-solar-vacuum dryer to produce high-quality dried fruits and vegetables. LWT 140:110777

    Article  CAS  Google Scholar 

  104. Yanyang X, Min Z, Mujumdar AS, Le-qun Z, Jin-cai S (2004) Studies on hot air and microwave vacuum drying of wild cabbage. Dry Technol 22(9):2201–2209

    Article  Google Scholar 

  105. Abdallah W, Kamal MR (2018) Influence of process variables on physical characteristics of spray freeze dried cellulose nanocrystals. Cellulose 25(10):5711–5730

    Article  CAS  Google Scholar 

  106. Zimmermann MV, Borsoi C, Lavoratti A, Zanini M, Zattera AJ, Santana RM (2016) Drying techniques applied to cellulose nanofibers. J Reinforc Plast Compos 35(8):628–643

    Article  Google Scholar 

  107. Aghajanzadeh S, Fayaz G, Soleimanian Y, Ziaiifar AM, Turgeon SL, Khalloufi S (2023) Hornification: lessons learned from the wood industry for attenuating this phenomenon in plant-based dietary fibers from food wastes. Compr Rev Food Sci Food Saf 22(1):4–45

    Article  CAS  PubMed  Google Scholar 

  108. Bashaiwoldu AB, Podczeck F, Newton JM (2004) A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets. Eur J Pharm Sci 21(2–3):119–129. https://doi.org/10.1016/j.ejps.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  109. Sablani SS, Rahman MS, Al-Kuseibi MK, Al-Habsi NA, Al-Belushi RH, Al-Marhubi I, Al-Amri IS (2007) Influence of shelf temperature on pore formation in garlic during freeze-drying. J Food Eng 80(1):68–79. https://doi.org/10.1016/j.jfoodeng.2006.05.010

    Article  Google Scholar 

  110. Nowak D, Jakubczyk E (2020) The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods. https://doi.org/10.3390/foods9101488

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ahmad-Qasem MH, Nijsse J, García-Pérez JV, Khalloufi S (2017) The role of drying methods on enzymatic activity and phenolics content of impregnated dried apple. Dry Technol 35(10):1204–1213. https://doi.org/10.1080/07373937.2016.1236344

    Article  CAS  Google Scholar 

  112. Benlloch-Tinoco M, Igual M, Rodrigo D, Martínez-Navarrete N (2013) Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innov Food Sci Emerg Technol 19:166–172

    Article  CAS  Google Scholar 

  113. Barreto I, Tribuzi G, Junior AM, Carciofi B, Laurindo J (2019) Oil–free potato chips produced by microwave multiflash drying. J Food Eng 261:133–139

    Article  CAS  Google Scholar 

  114. Duan L, Duan X, Ren G (2018) Evolution of pore structure during microwave freeze-drying of Chinese yam. Int J Agricultural Biol Eng 11(6):208–212. https://doi.org/10.25165/j.ijabe.20181106.4250

    Article  Google Scholar 

  115. Mounir S, Amami E, Allaf T, Mujumdar A, Allaf K (2020) Instant controlled pressure drop (DIC) coupled to intermittent microwave/airflow drying to produce shrimp snacks: process performance and quality attributes. Dry Technol 38(5–6):695–711

    Article  Google Scholar 

  116. Cao X, Chen J, Islam M, Xu W, Zhong S (2019) Effect of intermittent microwave volumetric heating on dehydration, energy consumption, antioxidant substances, and sensory qualities of Litchi fruit during vacuum drying. Molecules 24(23):4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Szadzińska J, Łechtańska J, Pashminehazar R, Kharaghani A, Tsotsas E (2019) Microwave-and ultrasound-assisted convective drying of raspberries: drying kinetics and microstructural changes. Dry Technol 37(1):1–12

    Article  Google Scholar 

  118. Téllez-Pérez C, Sobolik V, Montejano-Gaitán JG, Abdulla G, Allaf K (2015) Impact of swell-drying process on water activity and drying kinetics of Moroccan pepper (Capsicum annum). Dry Technol 33(2):131–142

    Article  Google Scholar 

  119. Mounir S, Allaf T, Sulaiman I, Allaf K (2015) Instant controlled pressure drop (DIC) texturing of heat-sensitive spray-dried powders: phenomenological modeling and optimization. Dry Technol 33(13):1524–1533

    Article  Google Scholar 

  120. Pravallika K, Chakraborty S, Singhal RS (2023) Supercritical drying of food products: an insightful review. J Food Eng 343:111375

    Article  CAS  Google Scholar 

  121. Khalloufi S, Almeida-Rivera C, Bongers P (2010) Supercritical-CO2 drying of foodstuffs in packed beds: experimental validation of a mathematical model and sensitive analysis. J Food Eng 96(1):141–150

    Article  CAS  Google Scholar 

  122. Brown Z, Fryer P, Norton I, Bakalis S, Bridson R (2008) Drying of foods using supercritical carbon dioxide—investigations with carrot. Innov Food Sci Emerg Technol 9(3):280–289

    Article  CAS  Google Scholar 

  123. Vetralla M, Ferrentino G, Zambon A, Spilimbergo S (2018) A study about the effects of supercritical carbon dioxide drying on apple pieces. Int J Food Eng 4:186–190

    Article  Google Scholar 

  124. Morbiato G, Zambon A, Toffoletto M, Poloniato G, Dall’Acqua S, de Bernard M, Spilimbergo S (2019) Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast. J Supercrit Fluids 147:24–32

    Article  CAS  Google Scholar 

  125. Corrochano BR, Melrose JR, Bentley AC, Fryer PJ, Bakalis S (2015) A new methodology to estimate the steady-state permeability of roast and ground coffee in packed beds. J Food Eng 150:106–116. https://doi.org/10.1016/j.jfoodeng.2014.11.006

    Article  CAS  Google Scholar 

  126. Yan Z, Sousa-Gallagher MJ, Oliveira FAR (2008) Shrinkage and porosity of banana, pineapple and mango slices during air-drying. J Food Eng 84(3):430–440. https://doi.org/10.1016/j.jfoodeng.2007.06.004

    Article  Google Scholar 

  127. Mavroudis NE, Gekas V, Sjöholm I (1998) Osmotic dehydration of apples. Shrinkage phenomena and the significance of initial structure on mass transfer rates. J Food Eng 38(1):101–123

    Article  Google Scholar 

  128. Karathanos V, Kanellopoulos N, Belessiotis V (1996) Development of porous structure during air drying of agricultural plant products. J Food Eng 29(2):167–183

    Article  Google Scholar 

  129. Torringa E, Esveld E, Scheewe I, van den Berg R, Bartels P (2001) Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. J Food Eng 49(2–3):185–191

    Article  Google Scholar 

  130. Hicsasmaz Z, Clayton J (1992) Characterization of the pore structure of starch based food materials. Food Struct 11(2):4

    Google Scholar 

  131. Joardder MUH, Kumar C, Karim MA (2017) Multiphase transfer model for intermittent microwave-convective drying of food: considering shrinkage and pore evolution. Int J Multiph Flow 95:101–119. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.018

    Article  CAS  Google Scholar 

  132. Marousis S, Karathanos V, Saravacos G (1991) Effect of physical structure of starch materials on water diffusivity. J Food Process Preserv 15(3):183–195

    Article  CAS  Google Scholar 

  133. O’Neill MB, Rahman MS, Perera CO, Smith B, Melton LD (1998) Color and density of apple cubes dried in air and modified atmosphere. Int J Food Prop 1(3):197–205. https://doi.org/10.1080/10942919809524577

    Article  Google Scholar 

  134. Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23(1):9–19

    Article  Google Scholar 

  135. Rahman MS (2009) Food properties handbook. CRC Press

    Book  Google Scholar 

  136. Lu X, Sun H, Chang T, Zhang J, Cui HL (2020) Terahertz detection of porosity and porous microstructure in pharmaceutical tablets: a review. Int J Pharm 591:120006. https://doi.org/10.1016/j.ijpharm.2020.120006

    Article  CAS  PubMed  Google Scholar 

  137. Rahman MS, Perera CO, Chen XD, Driscoll R, Potluri PL (1996) Density, shrinkage and porosity of calamari mantle meat during air drying in a cabinet dryer as a function of water content. J Food Eng 30(1–2):135–145

    Article  Google Scholar 

  138. Markl D, Strobel A, Schlossnikl R, Bøtker J, Bawuah P, Ridgway C, Rantanen J, Rades T, Gane P, Peiponen K-E (2018) Characterisation of pore structures of pharmaceutical tablets: a review. Int J Pharm 538(1–2):188–214

    Article  CAS  PubMed  Google Scholar 

  139. Klaja J, Łykowska G, Przelaskowska A (2015) Helium porosity measurements for rocks from unconventional reservoirs performed on crushed samples. Nafta-Gaz 71(11):856–863

    Article  Google Scholar 

  140. Sereno AM, Silva MA, Mayor L (2007) Determination of particle density and porosity in foods and porous materials with high moisture content. Int J Food Prop 10(3):455–469. https://doi.org/10.1080/10942910600880736

    Article  CAS  Google Scholar 

  141. Sun CC (2005) True density of microcrystalline cellulose. J Pharm Sci 94(10):2132–2134

    Article  CAS  PubMed  Google Scholar 

  142. Marques LG, Silveira AM, Freire JT (2006) Freeze-drying characteristics of Tropical fruits. Dry Technol 24(4):457–463. https://doi.org/10.1080/07373930600611919

    Article  CAS  Google Scholar 

  143. Aghajanzadeh S, Ziaiifar AM, Verkerk R (2023) Effect of thermal and non-thermal treatments on the color of citrus juice: a review. Food Rev Int 39(6):3555–3577

    Article  CAS  Google Scholar 

  144. Nugraha B, Verboven P, Janssen S, Wang Z, Nicolaï BM (2019) Non-destructive porosity mapping of fruit and vegetables using X-ray CT. Postharvest Biol Technol 150:80–88. https://doi.org/10.1016/j.postharvbio.2018.12.016

    Article  Google Scholar 

  145. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13(4):327–330

    Article  CAS  PubMed  Google Scholar 

  146. Adedeji AA, Ngadi MO (2011) Microstructural properties of deep-fat fried chicken nuggets coated with different batter formulation. Int J Food Prop 14(1):68–83

    Article  CAS  Google Scholar 

  147. Cafarelli B, Spada A, Laverse J, Lampignano V, Del Nobile MA (2014) X-ray microtomography and statistical analysis: tools to quantitatively classify bread microstructure. J Food Eng 124:64–71

    Article  Google Scholar 

  148. Khalloufi S, Ratti C (2003) Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure. J Food Sci 68(3):892–903

    Article  CAS  Google Scholar 

  149. Li J, Li Z, Wang N, Raghavan GSV, Pei Y, Song C, Zhu G (2020) Novel sensing technologies during the food drying process. Food Eng Rev 12(2):121–148. https://doi.org/10.1007/s12393-020-09215-2

    Article  CAS  Google Scholar 

  150. Nguyen TK, Khalloufi S, Mondor M, Ratti C (2018) Shrinkage and porosity evolution during air-drying of non-cellular food systems: experimental data versus mathematical modelling. Food Res Int 103:215–225. https://doi.org/10.1016/j.foodres.2017.10.013

    Article  PubMed  Google Scholar 

  151. Martynenko A (2017) Computer vision for real-time control in drying. Food Eng Rev 9(2):91–111. https://doi.org/10.1007/s12393-017-9159-5

    Article  Google Scholar 

  152. Martynenko AI (2011) Porosity evaluation of ginseng roots from real-time imaging and mass measurements. Food Bioprocess Technol 4(3):417–428

    Article  Google Scholar 

  153. Onwude DI, Hashim N, Abdan K, Janius R, Chen G (2018) The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying. J Sci Food Agric 98(4):1310–1324

    Article  CAS  PubMed  Google Scholar 

  154. Wang D, Martynenko A, Corscadden K, He Q (2017) Computer vision for bulk volume estimation of apple slices during drying. Dry Technol 35(5):616–624

    Article  Google Scholar 

  155. Sampson DJ, Chang YK, Rupasinghe HV, Zaman QU (2014) A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J Food Eng 127:49–57

    Article  Google Scholar 

  156. Baronio G, Harran S, Signoroni A (2016) A critical analysis of a hand orthosis reverse engineering and 3D printing process. Appl Bionics Biomech 2016:8347478

    Article  PubMed  PubMed Central  Google Scholar 

  157. Guo C, Zhang M, Bhandari B (2019) Model building and slicing in food 3D printing processes: a review. Compr Rev Food Sci Food Saf 18(4):1052–1069

    Article  PubMed  Google Scholar 

  158. Xu J, Ding L, Love PE (2017) Digital reproduction of historical building ornamental components: from 3D scanning to 3D printing. Autom Constr 76:85–96

    Article  Google Scholar 

  159. Uyar R, Erdoğdu F (2009) Potential use of 3-dimensional scanners for food process modeling. J Food Eng 93(3):337–343

    Article  Google Scholar 

  160. Kelkar S, Stella S, Boushey C, Okos M (2011) Developing novel 3D measurement techniques and prediction method for food density determination. Procedia Food Sci 1:483–491

    Article  Google Scholar 

  161. Jiang H, Zhang M, Adhikari B (2013) Fruit and vegetable powders. In: Handbook of food powders. Elsevier, pp 532–552

    Chapter  Google Scholar 

  162. Thamkaew G, Rasmusson AG, Orlov D, Galindo FG (2022) Reversible electroporation and post-electroporation resting of Thai basil leaves prior to convective and vacuum drying. Appl Sci 12(5):2343

    Article  CAS  Google Scholar 

  163. Lammerskitten A, Wiktor A, Mykhailyk V, Samborska K, Gondek E, Witrowa-Rajchert D, Toepfl S, Parniakov O (2020) Pulsed electric field pre-treatment improves microstructure and crunchiness of freeze-dried plant materials: case of strawberry. LWT 134:110266

    Article  CAS  Google Scholar 

  164. Lammerskitten A, Wiktor A, Siemer C, Toepfl S, Mykhailyk V, Gondek E, Rybak K, Witrowa-Rajchert D, Parniakov O (2019) The effects of pulsed electric fields on the quality parameters of freeze-dried apples. J Food Eng 252:36–43

    Article  CAS  Google Scholar 

  165. Arevalo P, Ngadi M, Bazhal M, Raghavan G (2004) Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices. Dry Technol 22(5):1233–1246

    Article  Google Scholar 

  166. Bazhal M, Ngadi M, Raghavan G, Nguyen D (2003) Textural changes in apple tissue during pulsed electric field treatment. J Food Sci 68(1):249–253

    Article  CAS  Google Scholar 

  167. Ade-Omowaye B, Rastogi N, Angersbach A, Knorr D (2003) Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. J Food Eng 60(1):89–98

    Article  Google Scholar 

  168. Turgut SS, Küçüköner E, Feyissa AH, Karacabey E (2021) A novel drying system–simultaneous use of ohmic heating with convectional air drying: system design and detailed examination using CFD. Innovative Food Sci Emerg Technol 72:102727

    Article  CAS  Google Scholar 

  169. Stojceska V, Atuonwu J, Tassou SA (2019) Ohmic and conventional drying of citrus products: energy efficiency, greenhouse gas emissions and nutritional properties. Energy Procedia 161:165–173

    Article  CAS  Google Scholar 

  170. Ding C, Lu J, Song Z (2015) Electrohydrodynamic drying of carrot slices. PLoS ONE 10(4):e0124077

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhong T, Lima M (2003) The effect of ohmic heating on vacuum drying rate of sweet potato tissue. Bioresour Technol 87(3):215–220

    Article  CAS  PubMed  Google Scholar 

  172. Cam IB, Gulmez B, Eroglu H, Topuz A (2018) Strawberry drying: development of a closed-cycle modified atmosphere drying system for food products and the performance evaluation of a case study. Dry Technol 36(12):1460–1473

    Article  Google Scholar 

  173. Attkan AK, Kumar N, Yadav YK (2014) Performance evaluation of a dehumidifier assisted low temperature based food drying system. J Environ Sci Toxicol Food Technol 8(1):43–49

    Google Scholar 

  174. Gan Q, Jiang Y-l, Yun D (2019) Drying characteristics, functional properties and in vitro digestion of purple potato slices dried by different methods. J Integr Agric 18(9):2162–2172

    Article  Google Scholar 

  175. Swasdisevi T, Devahastin S, Thanasookprasert S, Soponronnarit S (2013) Comparative evaluation of hot-air and superheated-steam impinging stream drying as novel alternatives for paddy drying. Dry Technol 31(6):717–725

    Article  CAS  Google Scholar 

  176. Aghajanzadeh S, Ziaiifar AM (2021) Pasteurization of juices with non-thermal technologies. In: Sustainable food processing and engineering challenges. Elsevier, pp 25–73

    Chapter  Google Scholar 

  177. Mahnic-Kalamiza S, Vorobiev E, Miklavcic D (2014) Electroporation in food processing and biorefinery. J Membr Biol 247:1279–1304

    Article  CAS  PubMed  Google Scholar 

  178. Buckow R, Ng S, Toepfl S (2013) Pulsed electric field processing of orange juice: a review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr Rev Food Sci Food Saf 12(5):455–467

    Article  CAS  PubMed  Google Scholar 

  179. Paraskevopoulou E, Andreou V, Dermesonlouoglou EK, Taoukis PS (2022) Combined effect of pulsed electric field and osmotic dehydration pretreatments on mass transfer and quality of air-dried pumpkin. J Food Sci 87(11):4839–4853

    Article  CAS  PubMed  Google Scholar 

  180. Ade-Omowaye B, Angersbach A, Taiwo K, Knorr D (2001) Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends Food Sci Technol 12(8):285–295

    Article  Google Scholar 

  181. Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, Hou CY, Hsieh CW (2022) Pulsed electric field-assisted drying: a review of its underlying mechanisms, applications, and role in fresh produce plant‐based food preservation. Compr Rev Food Sci Food Saf 21(6):5109–5130

    Article  CAS  PubMed  Google Scholar 

  182. Mounir S, Allaf K (2018) Response surface methodology (RSM) as relevant way to study and optimize texturing by instant controlled pressure drop DIC in innovative manufacturing of egg white and yolk powders. Dry Technol 36(8):990–1005

    Article  CAS  Google Scholar 

  183. Mounir S, Allaf T, Mujumdar AS, Allaf K (2012) Swell drying: coupling instant controlled pressure drop DIC to standard convection drying processes to intensify transfer phenomena and improve quality—an overview. Dry Technol 30(14):1508–1531

    Article  CAS  Google Scholar 

  184. Mounir S, Téllez-Pérez C, Alonzo-Macías M, Allaf K (2014) Swell-drying. Instant controlled pressure drop (DIC) in food processing: from fundamental to industrial applications. pp 3–43

    Google Scholar 

  185. Djaeni M, Bartels P, Sanders J, van Straten G, van Boxtel A (2007) Multistage zeolite drying for energy-efficient drying. Dry Technol 25(6):1053–1067

    Article  CAS  Google Scholar 

  186. Menon A, Stojceska V, Tassou SA (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol 100:67–76

    Article  CAS  Google Scholar 

  187. Oliviero T, Verkerk R, Dekker M (2013) A research approach for quality based design of healthy foods: dried broccoli as a case study. Trends Food Sci Technol 30(2):178–184

    Article  CAS  Google Scholar 

  188. Smith JC, Biasi WV, Holstege D, Mitcham EJ (2018) Effect of passive drying on ascorbic acid, α-tocopherol, and β‐carotene in tomato and mango. J Food Sci 83(5):1412–1421

    Article  CAS  PubMed  Google Scholar 

  189. Shewale SR, Rajoriya D, Hebbar HU (2019) Low humidity air drying of apple slices: effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innov Food Sci Emerg Technol 55:1–10. https://doi.org/10.1016/j.ifset.2019.05.006

    Article  CAS  Google Scholar 

  190. Lal AN, Krishnamurthy S, Girinandagopal M, Kothakota A, Venugopalan V, Ishwarya SP, Venkatesh T (2022) A comparison of the refrigerated adsorption drying of Daucus carota with fluidized bed drying. LWT 154:112749

    Article  Google Scholar 

  191. Djaeni M, A’yuni DQ, Alhanif M, Hii CL, Kumoro AC (2021) Air dehumidification with advance adsorptive materials for food drying: a critical assessment for future prospective. Dry Technol 39(11):1648–1666

    Article  Google Scholar 

  192. Xiao H-W, Mujumdar AS (2014) Impingement drying: application and future trends. In: Nema PK, Kaur BP, Mujumdar AS (eds) Drying technologies for foods, 1st edn. pp 279–299

    Google Scholar 

  193. Supmoon N, Noomhorm A (2013) Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Dry Technol 31(1):24–31

    Article  CAS  Google Scholar 

  194. Caixeta AT, Moreira R, Castell-Perez ME (2002) Impingement drying of potato chips. J Food Process Eng 25(1):63–90

    Article  Google Scholar 

  195. Prachayawarakorn S, Devahastin S, Soponronnarit S (2019) Advances in impinging stream processing of agricultural and biological products. In: Advanced drying technologies for foods. CRC Press, pp 53–76

    Chapter  Google Scholar 

  196. Khan MIH, Sablani SS, Nayak R, Gu Y (2022) Machine learning-based modeling in food processing applications: state of the art. Compr Rev Food Sci Food Saf 21(2):1409–1438

    Article  PubMed  Google Scholar 

  197. Casim S, Romero-Bernal AR, Contigiani E, Mazzobre F, Gómez PL, Alzamora SM (2023) Design of apple snacks–a study of the impact of calcium impregnation method on physicochemical properties and structure of apple tissues during convective drying. Innovative Food Sci Emerg Technol 85:103342

    Article  CAS  Google Scholar 

  198. da Silva Barros MH, Ferreira Filho AJM, da Silva Júnior EV, da Silva ES, Paim APS, Honorato FA, Azoubel PM (2021) Impregnation and drying to develop a melon snack enriched in calcium. J Food Sci Technol 58:672–679

    Article  Google Scholar 

  199. Kręcisz M, Kolniak-Ostek J, Łyczko J, Stępień B (2023) Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chem 413:135490

    Article  PubMed  Google Scholar 

  200. Yang Z, Li H, Xu Y, Liu Y, Kan H, Fan F (2019) Vacuum impregnation and drying of iron-fortified water chestnuts. J Food Process Preserv 43(12):e14260

    Article  CAS  Google Scholar 

  201. Beirão-da-Costa S, Duarte C, Moldão-Martins M, Beirão-da-Costa ML (2011) Physical characterization of rice starch spherical aggregates produced by spray-drying. J Food Eng 104(1):36–42. https://doi.org/10.1016/j.jfoodeng.2010.11.024

    Article  CAS  Google Scholar 

  202. Manzocco L, Mikkonen KS, García-González CA (2021) Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Struct 28:100188

    Article  CAS  Google Scholar 

  203. Kumar A, Montemagno C, Choi H-J (2017) Smart microparticles with a pH-responsive macropore for targeted oral drug delivery. Sci Rep 7(1):3059

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Bruno Thibault designed the review, wrote the first draft of the original manuscript, created some Figures and Tables, and revised and edited the manuscript. Sara Aghajanzadeh wrote some sections, created some Figures and Tables, and edited all sections. Afroza Sultana wrote some sections, revised, and edited the manuscript. Cristina Ratti critically reviewed the manuscript. Seddik Khalloufi designed the review, created some Figures, provided guidance, critically reviewed, and finalized the manuscript.

Corresponding author

Correspondence to Seddik Khalloufi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thibault, B., Aghajanzadeh, S., Sultana, A. et al. Characteristics of Open and Closed Pores, Their Measurement Techniques and Exploitation in Dehydrated Food Products. Food Eng Rev (2024). https://doi.org/10.1007/s12393-024-09376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-024-09376-4

Keywords

Navigation